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Abstract 

The efftXt of a single HOM-damper cell within a channel of 
undamped cells is described theoretically using an equivalent 
circuit model. From this a simple equation can be derived 
which relates the Q-value of the single damping-cell. the 
bandwidth of the passband under consideration. and the 
additional phase shift which is introduced by the damper cell to 
provide energy flow into the damper cell. This equation 
immediately shows the limitations of such single cell damping 
systems. Comparisons with experimental results are shown. 

Introduction 

The wake field effects in accelerator sections for future 
linear colliders will be reduced either by damping, by detuning 
or a combination of both [I. 2]. In the latter ca~e it is foreseen 
to employ heavily HOM-damped cells within a stack of 
undamped ones. This leads to several problems concerning the 
propagation of energy of the higher order modes under 
consideration from the undamped cells into the damping 
system. For example it was not known which is the Q of the 
single damper cell to be provided in order to achieve maximum 
damping in a channel of given bandwidth. If the chosen Q
value of the damper cell is too low for a given bandwidth of a 
certain passband no energy flow will take place from the 
undamped cells into the damper cell. In this case the damper 
cell behaves like an obstacle and separates a structure into two 
nearly undamped parts oscillating independently. If the Q-value 
of the damper cell and the bandwidth of a given passband are 
well matched the presence of the damper cell introduces an 
additional phase shift from cell to cell and energy flow can take 
place. We will derive a simple equation which shows the 
correlation between Q-value of the single damper cell, the 
bandwidth of the passband. and the additional phase shift using 
an equivalent circuit model. We will apply this formula to 
threc-. six- and twelve cell constant impedance structures loaded 
by a single wall slotted damping cell and will compare these 
calculations to experiments. 

Theory 

We consider a chain (see Fig. 1) of capacitively coupled 
circuits terminated by full end cells. We assume electric 

Fig. 1 Capacivcly coupled resonator model loaded by a single 
damping cell and with full end cells under electric 
boundary conditions. 

* work supported by DESY/Hamburg 
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boundary conditions [3.4] (the remaining iris of the Ieft
and the right end cell is closed by a metallic surface). All 
circuits are lossfrec except for the mth cell which is loaded by a 
resistance R. L and C being the inductance and the capacitance 
of the circuits. CK is the coupling capacitance. V m corresponds 
to a driving voltage in the mth circuit due to a antenna or the 
mirror charges of a passing particle and 1m is the current in the 
m th circuit. In the special case, where the resistance of the 
damper cell is small there are N solutions of the homogeneous 
equations (V m = 0) of the form [4] 

n 1 iWnt 
1m = An Cos(<l>n (m - - » e 

(m = I. 2, ... , N) (6) 
2 (n = 0, I, ... ,N-l) 

where n is the mode and m the cell number. <l>n is the phase 
shift per cell which is given by 

<l>n = n ~ 
N 

(n=O, 1, ... , N-l) (7) 

Wn = Wo ~ 1 + 4 ....c... sin 
2 
(<l>n) 

CK 2 
Wo = _1_ (8) 

VLC 

which is the dispersion relation for the chain of N 
capacitively coupled resonators (full end cells. elctric boundary 
conditions). 

For further steps we need only equation (3) for the damper 
cell. Multiplying (3) by the conjugate complex current and 
comparing the real parts yields: 

'" 1 "'" ... 
R 1m 1m - Re (-- (Im.l 1m + Im+! 1m» = Re (Vm 1m ) 

iwCK 

(9) 
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This equation is a statement regarding energy flow. The 
first term on left hand side is the power dissipated in the 
damper cell. the second term on the left is the power 
transmitted from the (m_l)th cell and the (m+ I )th cell to the m th 
cell by the coupling mechanism. The right hand side resembles 
the power fed into the damper cell due to an antenna or a 
particle passing. In the situation where there is no drive in the 
damper cell, we simply have: 

R 1m I: = Re (_1_ ( Im-! I: + Im+! I:» (10) 
iwCK 

For all modes we assume, that the dominant change in the 
field due to the presence of the damper turns out to be a phase 
shift am. If we assume that the slmcture is excited only from 
the right end (antenna in the right end cell) we may then write 
for the current term on the right hand side: 

The negative sign on the right hand side indicates, that 
power is leaving the damper cell by the coupling mechanism. 
Introducing 

a m-! - am = am - a m+! = fla (12) 

leads to 

it.a -it.a 
Im -! 1m + Im+! 1m = am-! 3m e - 3m+! 3m e (13) 

am . 3m+ I. and am-l are the unperturbed Amplitudes which 
are given by (6). Instead of (10) we then have: 

2 I it.a -it.a 
Ram = Re (-- (3m-! am e - 3m+! 3m e » 

iwCK 
(14) 

In the case of a beam driving the channel there would he an 
equal amplitude in the (m_l)th and (m+l)th cell thus leading to 
a power flow into the damper from both sides. 

2 I ioo it.a 
Ram = Re (-- (am-l 3m e + am+! am e » 

iwCK 
(15) 

Using relationship (14) or (15) one can easily calculate the 
additional phase shift from cell to cell which is introduced by 
the damper cell to provide energy flow from the undamped cells 
into the damper cell. The resultant quality factor for the whole 
slnIcture can be calculated using 

N • 
1 L I. Iv Iv 

Q. = w 2 v-I • 

iR 1m 1m 
2 

N • 

I. Iv Iv 
J!LQ~ 

WO 1m r: (16) 

For a specific example, consider O-mode operation. 
According to equation (6) we have 

3m = 3m-! = 3m+! (17) 

and we get 

R = _2 - sin(fla) 
w CK 

or if we divide by wL this relation becomes 

2 
l = 2 (WO) J:... sin(fla) = K sin(fla) 
Q w CK 

where the bandwidth K is defined by 

K = 2 IWIt - wol '" 2 .i:.... 
Wit + Wo CK 

w = Wo 

(18) 

(19) 

(20) 

(21) 

Depending on the chosen Q-value of the single cell damper 
and the given bandwidth of the passband under consideration we 
get to different cases. If the product 

QK~ 1 (22) 

becomes a number larger or equal to one equation (18) 
provides a proper phase shift between 0- and 90 degrees from 
cell to cell. 

In this case an energy transport from the undamped cells 
into the damper cell is possible and the damping system works. 
If the product 

Q K < 1 (23) 

becomes a number lower than one, equation (19) does no 
longer hold. i.e. there exist no phase shift to provide energy 
transport into the damper cell. In this case it is behaving like 
an obstacle. This case corresponds to the situation in which the 
quality factor of the damping cell is chosen too low for a given 
bandwidth and the possible group velocities in the passband 
which are connected to the phase shift arc always too low to 
provide energy flow. 

Furthermore from equation (19) we recognize that the 
introduced phase shift for a O-mode in a forward coupling 
passband i.s always positive and any number between 0- and 90 
degrees. 

Let us now consider a more complex example, the 2n/3-
mode. Then we have 

2 2n 3 21t I am-! am = C cos( - (m - -» cos( - (m - -» 
3 2 3 2 

2 21t I 21t 1 3m+l am = C cos( - (m + -» cos(- (m - -» 
3 2 3 2 

Thus we get 

cos(21t (m-l» '00 cos(21t (m+ 1 » it.a 

R = Re(_1 _ ( 3 2 e' _ 3 2 e- » 

iwCK cos(21t (m-i» cos(21t (m-i» 
3 2 3 2 
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Here the phase shift depends on the position of the damper. 
If the damper is located in a position with the maximum 

field strength we have to use 

2 
1.. = - 2 (~) K sin(.1a) 
Q (1)21</3 

(24) 

and in the position of half maximum field strength of the 
unperturbed mode we have to use 

2 
1.. = _1 (~) K sin(.1a) 
Q 2 (1)21</3 

(25) 

where 

(26) 

The negative sign in equations (24) and (25) leads to a 
negative phase shift which lowers the phase shift of the 2rr/3-
mode to an appropriate value, i. e. the phase shift has always 
to be moved in the direction of larger group velocities, i.e. rr(2-
mode. that means for the 2rr/3-mode a lower pha,e shift from 
cell to cell. The phase shift of the 2rr/3-mode can become any 
number between 90- and 120 degrees. 

Comparison with experimental results 

For experimental proof of the theory three-. six- and twelve 
cell constant impedance structures [5J. loaded by a heavily 
HOM-damped cell. where used. Cell geometry is identical to 
the DES Y fTHD-collider prototype. The damping system is a 
wall slotted iris. The slots lead into rectangular waveguides 
whose cut off frequency was chosen well above the fundamental 
passband. 

We start our comparison with the O-mode. In this case one 
can use the mea,ured Q-value of the TM 11O-pill box mode of 
the single damper cell directly. since the TM11O-pill box mode 
geometry remains nearly the same in a longer structure. 

The Q-value of the TM 11O-pill box mode of the strongest 
wall slotted damper cell which was applied to a three- and a six 
cell structure was in the region of 6. Using equation (19) and 
taking into an account that the bandwidth K of the second 
dipole passband is 0.1 leads to a phase shift of about 

o 
.1a = 65 

(27) 

The resulting quality factor of the whole structure can be 
calculated applying equation (16) laking the new phase shift 
(27) into an account. The agreement between the measured- and 
the calculated Q,-values can be obtained from Table I. 
Furthermore we have applied a weaker damper cell with a Q
value of about 86 to a twelve cell structure. In this case we 
found a phase shift of about 

(28) 

for the O-mode. Again applying formula (16) leads to a 
calculated quality factor Qs = 980. A quality factor Qs = 950 
was measured. 

Now we take a look on the 2rr/3-mode in the damped six 
cell structure. The 2rr!3-mode is a member of the first dipole 

TABLE 1 
Comparison of Measured- and Calculated 

Qs-Values 

structure Qs-measurcd Qs-calculated 

3-cell structure 50 54 
6-cell structure 510 480 

passband which turns out to be of very low bandwidth. K is 
of the order of 1*10.2 which is of course a very small number. 
Furthermore the damper cell was located in a position with half 
of the maximum field strength. Thus we have to apply 
equation (25). If we lake Q=6 equation (25) does no longer 
hold. No energy transport is possible. The structure separates 
into two nearly independently oscillating parts which could be 
confirmed by experiment. 

Conclusion 

Using an equivalent circuit model a formula giving the Qs 
of a chain of coupled cells, loaded by a single damper cell, was 
derived. The method is easy to use and provides reasonable 
accurate resuIL,. It appears that the idea of introducing a phase 
shift between cells is successful in describing the behaviour of 
a stack of iris cells loaded by a single damper cell. The relation 
obtained shows immediately the properties and limitations of a 
single cell damping system. 

Deviations between experiment and theory are due to the 
fact, that the simple equivalent circuit model lakes only one 
space harmonic of the field geometry into account and thus 
changes in field geometry are not considered, i.e. the measured 
quality factor Q of the single damper cell which has to be 
inserted into equations (18). (24) and (25) is different for the 0-
mode and for the 2rr/3-mode because of the changed mode 
geometry. For example the single cell Q-value of the damper 
cell has to be somewhat higher for the 2rr/3-mode than for the 
O-mode since the strongest field strength for the 2rr/3-mode is 
mainly located within the iris whereas the field of the O-mode 
is very similar to the TM 11O-pillbox mode and thus the 
coupling to the waveguides is much stronger for the O-mode. 
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