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Abstract 

Ferrite has a variety of applications in accelerator com­
ponents, and the capability to model this magnetic mate­
rial in the time domain is an important adjunct to cur­
rently available accelerator modeling tools. In this paper is 
described a general dispersive material model which is suit­
able for a wide variety of media, including ferrite. Based on 
this model we have developed a representation of the time­
domain magnetic properties of PEllBL, the ferrite used in 
the induction modules of the ETA-II (Experimental Test 
Accelerator - II) induction linac at LLNL. This material 
is characteristic of the soft ferrites commonly used in in­
duction accelerators. The model has been implemented in 
1-D and 2-D finite-difference time-domain (FDTD) electro­
magnetic simulators, and comparisons with analytic and 
experimental results are presented. 

Introduction 

Soft ferrite found in induction accelerator cells has two 
principal roles: (1) it acts as an inductive load to the pulse 
power drive to the cell, and (2) it acts to lower the quality 
factor (Q) of undesirable rf modes in the cell. In this pa­
per we will focus on the latter role, in which the material 
may be characterized by its small signal response. The fre­
quencies of interest are bounded above by the beampipe 
cutoff of the TE1n (dipole) modes, which for the ETA-II 
accelerator is ~1.3 GHz. At low frequencies the magnetic 
response of a polycrystalline NiZn ferrite such as PEllBL 
manufactured by TDK (properties are listed in Table 1) 
is dominated by the motion of domain walls. At frequen­
cies above ~1 GHz the domain walls can no longer track 
the applied rf field, and the response becomes dominated 
by the ferromagnetic spin resonance of dipoles within the 
domains [1]. 

In general, the small signal response of the material 
biased with an applied magnetic field is characterized by 
a tensor permeability with nonzero off-diagonal elements 
[2]. When there is no preferred direction imposed by an 
applied magnetic field, or by other means, then the tensor 
collapses to a scalar. It is this case that we will investigate 
in this paper. The more general case is a straightforward 
generalization of this analysis. 

t Work was performed by the Lawrence Livermore 
National Laboratory under the auspices of the U. S. De­
partment of Energy under contract No. W-740S-ENG-48. 

Table 1. Properties of PEllBL (from TDK data sheets 
and direct measurements). Te = Curie temper­
ature; B. = saturation magnetization; Br = re­
manent magnetization; p = bulk resistivity; He 
= coersive force. 

PE11BL (ETA-II ferrite) 

Tc 1300 C 

Bs .33 T 

Br .11 T 

p 103 n·m 
He 20 Aim 

Our interest is in calculating the beam coupling im­
pedance associated with an accelerator component such 
as an induction cavity. The impedance is a very useful 
quantity in the study of beam-structure interactions and in 
beam instability analysis in accelerators. The impedance 
is defined by the relation 

( 1) 

where - indicates Fourier transform, e is the velocity of 
light (and the assumed velocity of the particles), and W 
is the wake potential. The potential is defined as the in­
tegral, along the test charge path, of the Lorentz force on 
the charge due to the source charge as they traverse an 
accelerator component, i.e., 

~ 1Joo[~ ~ ~]I W(s) = - E + ek X B dz. 
Q t=~ 

-00 

(2) 

The interested reader can consult the literature [3] for more 
detailed discussions on the calculation and use of wake 
potentials and coupling impedances. 

Typically, one is interested in broadband information 
about the impedance spectrum, and time-domain simula­
tion is a natural and powerful technique for generating such 
a spectrum. In the past the presense of dispersive media 
such as ferrite has complicated the time-domain simulation 
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problem by requiring a computationally intensive convolu­
tion to be performed at every time step. However, Vee [4], 
and later Luebbers, et al. [5], have pointed out that when 
the frequency dependence of a material constitutive pa­
rameter can be represented by simple poles in the complex 
plane, an algorithm exists for reducing the convolution to 
a running sum. This discovery greatly simplifies the nec­
essary calculation, and we exploit a variation of Luebbers' 
method in this work. 

Relaxation Model of Ferrite Permeability 

When a broadband response is desired from a frequen­
cy-dependent medium, it is necessary to compute a con­
volution in the time domain to properly account for the 
time-dependent polarization of the material. Specifically, 
when the medium is magnetically dispersive and we can 
characterize it with a scalar permeability, we have 

B(w) = J.lo (1 + Xm(w)) H(w), (3) 

which in the time domain becomes 

where X m (t) is the Fourier transform of the magnetic sus­
ceptibility X m (w), and we refer to it as the magnetic re­
sponse function of the material. 

As indicated by Luebbers, when a material has a re­
sponse function of the form 

_ { L cqe iw1t
, t > 0; 

Xm(t) = / 
0, t ::::; 0, 

(5) 

the convolution in Eqn. (4) becomes 

(6) 

t 

where f~(t) = J e- iW1T H(r)dr is a runnmg sum, thus 
T=O 

eliminating the necessity to store values of H at previous 
time steps in the simulation. This simple observation, and 
the fact that a large class of interesting materials may be 
accurately represented using sums of exponentials, has im­
portant implications for time-domain modeling. Eliminat­
ing the need to store previous values of the fields makes it 
possible to model realistic media in the time-domain with 
relatively little increase in the computational requirements 
over non-dispersive media, and one method of exploiting 
the observation is outlined below. 

At frequencies below the ferromagnetic resonance, the 
following form for Xm(t) is appropriate: 

t > 0; 

t ::::; 0, 
(7) 

which yields a complex magnetic susceptibility of the form 

(8) 

where ai, /3/, and 1/ are all real, and /3/ ~ o. We obtain 
Eqn. (9) by arguing first that an instantaneous response of 
the magnetization in a material to a change in the applied 
field is unphysical. This requires that Xm(O) = 0, which in 
turn demands that the poles come in pairs, and thus we get 
the sinh term. Secondly, at frequencies significantly below 
the ferromagnetic resonance, the magnetization physics is 
dominated by the motion of domain walls that vary widely 
in their size and shape, and thus their resonant frequencies. 
The macroscopic response of this type of system may be 
reasonably approximated with a relaxation model. If there 
is interest in frequencies at or above resonance, then a term 
of the form ae-.Btsin([t) must be added to Eqn. (7) to 
obtain an accurate representation of the material. 

To obtain the adjustable parameters in Eqn. (8) for a 
specific material requires a pole extraction from the given 
susceptibility function. For the purposes of this paper we 
wrote a simple program that did an exhaustive search in 
a localized region of parameter space for the optimal val­
ues of a, /3, and I to obtain the fit to experimental data 
shown in Fig. 1. The experimental data were obtained 
by performing a reflection measurement as described in a 
previous Proceedings of this conference [6]. 

103~--------------------------------~ 

o 
::l. 10 
"3. 

" 

-- 2-term fit: Re part 
o Meas. values: Re part 

._-- 2-term fit: 1m part 
" Meas. values: 1m part 

Frequency (Hz) 

o 

o 0 
o 

Fig. 1. Experimental data, and 2-term fit to the experi­
mental data (see Eqn. (8)), for the permeability 
of the PEllBL ferrite. Parameters used in fit are: 
al = 6.67 X 1010 , /31 -II = 1.77 X 108 , /31 + II = 
1.00 X 1011, a2 = 2.97x 1010 , /32-12 = 2.73x 107 , 

/32 + 12 = 1.00 X 1011. 

I-D Model 

To study the numerical characteristics of the disper­
sive media model we conducted a series of tests using the 
finite-difference time-domain (FDTD) [7] technique in one 
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dimension. The problem geometry and field distribution 
are shown in Fig. 2. The FDTD updating equations 
and field distribution are obtained by replacing all spatial 
and temporal derivatives in the Maxwell curl equations 
with their center-differenced equivalents. This prescrip­
tion leads to a scheme which is explicit and second order 
in time and space. When the material is non-dispersive 
the updating equations in 1-D are easily obtained: 

BEx __ BBy __ BHy 
Bz - Bt - J-L Bt ' 

(9) 

yields 

(10) 

where the superscripts indicate the time step, and the sub­
scripts indicate the spatial position. Similarly, for the elec­
tric field update, we have 

BHy BDx BEx -- = --- = -E--
Bz Bt Bt ' 

which yields 

( a) 

Gaussian pulse launched Material 

/ from this point / interface 

( RBC 

Vacuum 
PE11BL 

Ferrite 

-E-- 30 em ---)--'7 -E---- 20 em -----7 

(b) 

1~6z ----7/ 
o DOD o 

(11) 

(12) 

PEC 

~ 

HI+S/2 

Fig. 2. (a) 1-D slab reflection problem geometry. PEC 
= perfect electric conductor; RBC = radiation 
boundary condition. (b) Distribution of field com­
ponents in 1-D FDTD simulation. 

When the material is dispersive, the situation is com­
plicated by the convolution which must be done. Any given 
media exhibits both electric and magnetic dispersion, but 
for the purposes of this discussion we restrict ourselves to 

the analysis of magnetic dispersion. The simulation of elec­
tric and magnetic dispersion effects simultaneously is the 
subject of a future paper. To determine the update equa­
tion for the magnetic field, we proceed in the following 
manner: 

(13) 
Assuming the magnetic response function X m is of the form 
given in Eqn. (7), we have 

where AI = /31 -,I and BI = /31 + ,I. The discrete form of 
Eqn. (14) is given by 

H n+ 1/ 2 = H,,:-1/2 _ ~ (En _ En) + (~t)2 X 
J+1/2 J+1/2 J-Lo~Z J+1 J 2 

n-1 (~ )2 
"" A"" -At(n-p-1/2)At H P +1/ 2 _ __ t_x 
L.., al I L.., e 3+ 1/ 2 2 

I p=O 

n-1 
"" B"" -Bt(n-p-1/2)AtHP+1/2 
L.., al I L.., e j+1/2 . (15) 

I p=O 

Defining two auxiliary functions, Rand S, which can be 
updated recursively, using 

n-1 
Rn _"" -Adn-p-1/2)At H P +1/ 2 

l,j+1/2 - L.., e j+1/2' (16) 
p=o 

n-1 
sn _"" -BI(n-p-1/2)M H P+1/2 

l,j+1/2 - L.., e 3+1/2 ' (17) 
p=O 

yields the following set of update equations for the mag­
netic field: 

H n+ 1/ 2 =Hn - 1/ 2 _ ~ (E'?- _ En) + (~t)2 X 
j+1/2 3+ 1 / 2 J-Lo~Z J+1 J 2 

L al [AIR~j+1/2 - BISI~j+1/2] , (18) 
I 

R n _ -AIAt/2 [Hn - 1/ 2 + e-AIAt/2 R n - 1 ] (19) 
l,j+1/2 - e 3+ 1 / 2 l,j+1/2 

sn = -BIAt/2 [H n - 1/ 2 + e-BIAt/2Sn-:-1 ] (20) 
I,J+1/2 e J+1/2 I,J+1/2 '\ 

When the electric dispersion is ignored, as in this case, 
the electric field update is given by Eqn. (12). The auxil­
iary functions are real, which leads to the conclusion that 
the amount of additional storage needed (per field com­
ponent) to implement this scheme is 2Np real numbers, 
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where Np is the number of terms in the expansion of the 
susceptibility (Eqn. (8)). The number of floating point 
operations required (per field component updated using 
dispersion model) is lONp + 4 in 1-D, up from 3 when the 
media is nondispersive. 

To test the method and its implementation we solved 
the 1-D reflection problem illustrated in Fig. 2a using the 
parameterization obtained for the PE11BL ferrite. A short 
Gaussian pulse (at = .5 ns) was impinged on the ferrite 
slab, and the normalized reflection coefficient was obtained 
for the frequency range 0-3 GHz by taking the ratio of 
the Fourier transforms of the incident and reflected pulses. 
These data are compared with the analytic result in Fig. 
3, with excellent agreement. 

The magnetic dispersion model has been implemented 
in the 2~-D FDTD wakefield code AMOS [8], and a 2-D 
analog to the slab reflection problem was used as a test 
case. Specifically, we computed the reflection of a pulse 
from a ferrite load in a shorted coaxial transmission line. 
Again, excellent agreement with the analytic result was 
obtained (see Fig. 4). 

1.0 ,--------------------

0.5 

a: 0.0 

-0.5 

o 

- Re(R) analytic 
o Re(R) simulation 

. _-- Im(R) analytic 
" Im(R) simulation 

-1.0 L...._~~~~-'-'--'-_---'_~~~w.L._~~~~..L..LW 
106 107 108 109 

Frequency (Hz) 

Fig. 3. Analytic and simulated values of the reflection 
coefficient for the 1-D problem involving normal 
incidence on a dispersive ferrite slab (PE11BL) 
backed by a perfect electric conductor. 

AMOS Application: ETA-II Induction Cell 

The ETA-II [9] induction linac is a high current elec­
tron machine, producing a 6 Me V, 3 KA beam for gener­
ating high power microwaves. Because of the large beam 
current, the machine is subject to a possible transverse 
beam instability known as beam breakup (BBU) [10]' and 
so the transverse dipole coupling impedance of the induc­
tion module is of particular interest. 

AMOS has been used to study the impedances of the 
ETA-II induction cell using the dispersive ferrite model 

0.5 

a: 0.0 

-0.5 

107 

- Re(R) analytic 
o Re(R) simulation 

._-- Im(R) analytic 
to Im(R) simulation 

108 

Frequency (Hz) 

109 1010 

Fig. 4. AMOS calculation vs. analytic result for reflec­
tion coefficient in a shorted coaxial transmission 
line loaded with a PE11BL ferrite toroid. 

described above. A cross-sectional diagram of this cell is 
shown in Fig. 5. The cell is rotationally symmetric about 
the indicated centerline, with the exception of pulse power 
feed lines whose center conductors penetrate the outer shell 
at two locations 1800 apart and connect to the base of the 
ferrite core as shown. When the cables are ignored in the 
simulation (but left in during the experimental measure­
ment) one gets reasonable agreement between the model 
and the experiment for the dipole component of the trans­
verse (radial component) coupling impedance (see Fig. 6). 
The technique used to measure the impedance is the "two­
wire" method described elsewhere [11], and the experimen­
tal data presented are for two cases: (1) single cell mea­
surement; (2) double cell measurement, with the resulting 
values halved to get an equivalent single cell impedance . 
Both measurements were taken with the wires in a plane 
90 0 from the plane of the drive rods, which show the least 
perturbation resulting from the rods. 

8eampipe 

Pulse power feed 
line 

Alumina 

Vacuum 
I 
I 
I 

I I 
I I L ___________________ ~--------------------I 

Fig. 5. Illustration of a cross-section of an ETA-II induc­
tion module. Cell is rotationally symmetric about 
the indicated centerline except for the pulse power 
feeds (indicated with dashed lines) which enter 
the cell at two points 1800 apart. 
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The AMOS result shows best agreement with the two­
cell measurement. The single-cell measurement exhibits 
two features that are not present in either the two-cell 
data or the AMOS result, these being the peak at approx­
imately 700 MHz, and an approximately 100 O/m base­
line impedance. The former corresponds in frequency to 
an m = 3 mode. The two-wire technique will in gen­
eral yield information about coupling to all modes with 
odd azimuthal symmetry, although the coupling strength 
falls off as the wire separation to the power 2m - 1. For 
wires sufficiently close together this coupling law will en­
sure that only the dipole mode contributes significantly to 
the measured impedance, but increasing the wire separa­
tion will eventually lead to measurable contributions from 
the higher order modes. However, as the wire spacing was 
the same in the one-cell and two-cell cases, attributing the 
measured peak at ~700 MHz to an m = 3 mode is unsub­
stantiated by the data. The 100 O/m baseline apparent in 
the single-cell measured data is not understood at present, 
and measurements on other cells did not show this baseline. 
Measurements on simple structures with known coupling 
impedances suggest that the experimental data are good 
to ±20%. 

The pulse power feed cables introduce the potential 
for azimuthal mode coupling and mode splitting. At the 
relatively low frequencies that we are considering, the de­
gree to which the cables disturb the dipole modes that are 
important to BBU depends on the the relative impedance 
of the cable and the TEM line formed by the ferrite load. 
Experimental measurements on similar cavities (DARHT 
induction modules) with and without the cables show some 
differences between dipole impedance measured with the 
two wires in the plane of the feed lines vs. measurements 
with the wires in the plane perpendicular to the feed lines. 
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Fig. 6. Comparison of experimental data and AMOS cal­
culation for transverse dipole impedance of ETA­
II induction module. 

Conclusions 

Time-domain simulation of media has long been ham­
pered by inefficient methods for including the dispersive 
effects of media. The recent realization that materials with 
exponential response functions could be handled efficiently 
has revolutionized dispersive media modeling, making it 
computationally inexpensive for a wide variety of materi­
als. 

An implementation of a dispersive media model, and 
its application in 1 and 2 dimensions, is discussed in this 
paper. The PEllBL ferrite was characterized over a broad 
frequency range,and I-D numerical experiments were per­
formed which showed excellent agreement between simu­
lated and analytic reflection coefficients over several dec­
ades in frequency. The models have been implemented in 
the AMOS wakefield code, and calculations of the trans­
verse coupling impedance of an induction module in the 
ETA-II accelerator was presented. These data showed rea­
sonable agreement with the impedance values obtained ex­
perimentally using the two-wire measurement technique. 

Work is ongoing to install a dielectric dispersion model 
into AMOS in order to accurately characterize the electri­
cal properties of ferrites and other materials, and the com­
bined effects of magnetic and electric dispersion in simula­
tion will be discussed in a forthcoming paper. 
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