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Introduction

For an ultrarelativistic (y > 1) particle traveling in a
beam pipe of constant cross-section, the calculation of
the longitudinal /transverse coupling impedance reduces to
two-dimensional calculation of the static fields due to a
monopole/dipole charge or current singularity along the
axis. In this paper, we formulate the general calculation of
coupling impedance and apply it to an elliptical beam pipe.
In particular, we obtain the longitudinal /transverse resis-
tive wall impedance, as well as the longitudinal/transverse
impedance of one or more small holes in the beam pipe.

Longitudinal Coupling Impedance

For a drive beam of current density
J. = Io8(x — 21)8(y — y1) exp(—jkz) (1)

in the frequency domain, with k¥ = w/c, the longitudinal
impedance is defined as

Z)(k :—M/ dz E.el**, (2)

where F, is the longitudinal component of the electric field
when z; = 0,51 = 0. We use Eq. (1) to rewrite Z; (k) as

1 : .
RTAE /du]: i (3)

where the volume integral is over a region which includes
the drive beam.

Z” (k) =

We now consider two situations. The first. denoted by

the subscript 1, is the lossless pipe, and the second, de-

noted by the subscript 2, 1s the pipe with wall losses. We
then construct
LIP12) )+ 2y k) = 1012 ) = 2 k)
- _/dv[ﬁg T+ ET ). (4)

*Supported in part by the Department of Energy.
tPresent address, CEBAF, Newport News, VA.

480

where Zﬁ”(k’) 1s imaginary. (It actually vanishes in the
ultrarelativistic limit.) Using

Jq:Vxﬁlyg—jweEm. VXE'113:~]'Q)/LF]‘1,Q. (5)

Eq. (4) can be converted into a surface integral, leading to

|22y (k) = /db‘ io[Eyx Hf + Er x Hd),  (6)
where the surface encloses the drive beamn. If we choo%e S
to be the inside surface of the beam pipe, 7 - b x Hy =
and we have, for a length of beam pipe L.

[Io|*Z) (k) = =1 % dsE.H7 . (7)
where s 1s a coordinate tangential to the beam pipe surface
in a plane perpendicular to the axis of the beam pipe.
The form in Eq. (7) 1s a generalization of a result derived
earlier[1] for a beam pipe of circular cross-section and used
recently by Napoly[2].

We now obtain the result for a resistive wall by express-
ing F, at the wall in terms of H,,. Specifically we take

E.= —ké(1 4+ j)ZoH1./2. (8)

where 6 = (2/kaZy)"/* is the skin depth of the wall mate-
rial whose conductivity is . Here Zg = (p/e)'/* = 1207
ohms is the impedance of free space. Using Eq. (8), we
write the longitudinal impedance as
P2/ 20 = (s kLoj2) fasiin
Finally, H;s; can be obtained from the solution of the
Laplace (or Poisson) equation in the two transverse di-
mensions since ¢29% /5% = 97 /9t for an ultrarelativistic
particle. Specifically

Z(;[{L\ = ];‘1,, = - t;.\p(—jk':)TlQ)(.l:.y), (IU)
where ®(u. y) is the solution of
Vi®(r.y) = =Zolyole — e )by — ). (1)

with perfectly conducting boundary conditions at the
beam pipe wall. Here n is a coordinate normal to the
beam pipe wall and F, 1s the electric field normal to the

beam pipe surface for the lossless problem.
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Transverse Coupling Impedance

The transverse coupling impedance can be analyzed in a
similar manner.
current

If we start with the axial dipole drive

J: = Lob(y) exp(—jkz)[d(x — z1) — &z + «))],  (12)

the transverse impedance in the x-direction can be ex-
pressed as the limit for small 2 of

B : /Oo dz—aEz elke
2k[0$1 Oz '

Zy(k) = (13)

— 00

where OF, /0x is evaluated for z = y = 0. But we can also
write the derivative of £, at the origin as

0EZ _ El(zhoaz) - El(_zhouz)

Oz 2z, (14)
for vanishingly small 2;. Thus we have
Z:(k)= - —«—}—,,V/Oo dz[E,(21.0,z)
dklpzy J_o
— B (=10, 2))el* (15)

Using the value of J in Eq. (12), we can therefore write

1 " -
Ze(ky= —————= [ dvE - J", 1
a 4kl’ﬂ]up/ ! (16)
in analogy with Eq. (3). As before, the volume integral
in Eq. (16) can be written as a surface integral, and we
obtain

4z Ik Z, (k) = ~L?{dsE;Hl*s, (17)
where we must now use the fields corresponding to the
dipole configuration in Eq. (12). Finally, we use Eq. (8)
to obtain

422|102 24 (k)/ Z0 = (1 +j)(L5/2)fds|H“|’—ﬂ (18)

Beam Pipe of Elliptical Cross Section

The Poisson equation for the electrostatic potential of a
line charge of density A located at @ = 21,y = y; 15

9°d

oz?

%P A
= == 1)y — ).

~ 19
dy* €q (19)

where A/eg can be written in terms of the drive currnt as
Aleo = Zolp. We transform to elliptic coordinates defined
by

r = ccoshucosv

(20)
(21)

= c¢sinh usinv

where the beam pipe is an ellipse of major axis 2a, minor
axis 2b, with

b=csinhug, ¢ =a® - b°. (22)

a = ccoshug ,
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In the transformed coordinate system, Eq. (19) becomes

5
ou?

R B
v

—Zolod(u — uy)o(v — vy), (23)

where uy, vy are related to ry.y; by Eqgs. (20) and (21).
We write the solution to Eq. (23) as[3]

d(u,v) = fo(U)+Z fn(u) cos 7’1,1.7+Zg”(u)sin nv, (24)
n=1 n=1

where fy,(u) turns out to be proportional to cosh nu cos nv;
and gp(u) turns out to be proportional to sinh nusin nv;.
For the longitudinal impedance, we use

1 9% _ Io Qo(v)

el = =2 u = 2x hio) (28)
where the metric h(v) 1s given by
h{v) = c(siuh"‘ up + sin” v)l/"" (26)
and where
e cos 2m _
Qu(r)51+2m2_(41)”'m. (27)
In this way find

where n = &L /2w 1s the harmonic number. and where

sinhug [°7 )2 (v)dv
Golug) = = “/ Gl
27 Jo  [sinh” ug + sin® v]1/?
In a similar way we obtain the transverse impedance
) — G o . W
Zo 2mwh3 ey (o) (30)
where
. sinh? w, 77 2 (vyde
Glr,y(uo): u/ - r_»QlA'J — - (31)
A7 Jy o [sinh? wy + sin” o]
In this case we have
faw
cos(Zm + 1)v
() =2 S (2m 4 )T gy
@t 72_20( A )(‘()511(277) + L)y 152)
it sin(2m + e
=2 -H"2m+ y—_— 33
@iy (v) Z( Jrm )511111(2771 + Duy (33)

m=0
We have chosen a normalization such that Gy(x) =
Gra(x) = Gi(x) = L.
sults for a circular beam pipe.

reproducing the well known re-

A graph of the numerical values of Gy G Gy bs pre-
sented in Fig. 1 as a function of ¢ = (a — b)/(a + b). The
values for ¢ = 1 correspond to parallel plates, and are in
agreement with results obtained by others.
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Coupling Impedance of Holes in the
Beam Pipe

We start with Egs. (7) and (17) and assume that the
dimensions of the hole are small compared with the wave-
length. In this case, the coupling integral

L}{dsEsz,:/dSﬁ~Exﬁ1, (34)
written here as an integral over the interior aperture of
the hole, can be expressed in terms of the inside electric
polarizability, vin, and inside magnetic susceptibility, ¥;,,
of the hole as

o
/dST—l‘-EXle—jW{T“l(win_Xin)' (35)
We have here assumed that the field outside the beam
pipe can be ignored. A more complete discussion of the
inside and outside polarizability and susceptibility i1s given
elsewhere, including numerical results for a circular hole in
a wall of finite thickness{4].

Once ¢, and x;n are known, the impedance can be
calculated from |H1|? along the beam pipe wall. For the
longitudinal coupling impedance, |H1,| is proportional to

1.0 7o

0.8 —

0.0

Qo(v) in Eq. (27) for an elliptical beam pipe., where v
is the azimuthal coordinate of the hole. For the trans-
verse coupling impedance the corresponding quantities are
Q1z,1y(v) in Egs. (32) and (33).The impedances of well
separated holes (by at least a few hole diameters) can be
added to each other, since the surface integral in Eq. (34)
extends over all holes.
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Figure 1: numerical values of Go(q),G1z(g) and G1,(g) for the elliptical pipe as a function of the “nome” g = (¢ = b)/(a + b).
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