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Introduction 

In a previous note[l] a method was presented for calcu­
lating the longitudinal coupling impedance of an iris in 
a beam pipe. In particular we considered a point charge 
Q traveling along the z-axis of a beam pipe of radius a, 
obtaining the source fields in the frequency domain (time 
dependence exp(jwt)): 

E(s)(r z' k) = Z(s) H (1' Z" k) = ~e-Jkz E(S 1= 0 (1) 
r " 0 8" 27fT ~ ,;: . 

We solved two separate problems, each with a simplifying 
symmetry, by separating the source fields into a part even 
in z (coskz) and odd in z(-jsinkz). The even and odd 
problems were then solved by writing the fields as a sum of 
outgoing TMon modes in the waveguide region Izl :::: gl2 
and either symmetric or antisymmetric waveguide modes 
in the iris region Iz 1 ~ 9 12, l' ~ b. 11atching the boundary 
conditions at z = ±g 12 then led to an infinite set of linear 
equations for the mode coefficients, and solutions were then 
obtained by truncating the resulting matrix equations. 

The numerical work which then followed turned out not 
to be well convergent. In the present work we construct 
an alternate basis vector for the matrix equations, and find 
that the numerical implementation is well convergent. 

In this paper we outline the new cakulation and present 
numerical results for the limit alb ~ 00, corresponding to 
a beam passing through a circular hole in a thick wall. 

Matrix Equations 

The field components for the evell problem (E,. is evell in 
z, Ez and He are odd) are written in the waveguide region 
(Izl :::: g12, 0 ~ l' ~ a) as 

ZoHe 

~coskz 
27rr 

+ !:l. ~ Amh (PmI') e- j l'm(l z l-g/2) 
27r L a 

m=l 

± 

(2) 

where Pm are the zeros of Jo(p). Here 

(lm = (k2 - p;"/a2)1/2 = _j(p~,/a2 - k2)1/2, (4) 

where the sign of the second term ill Eq. (4) is chosen so 
that the terms in the sums in Eqs. (2) and (3) correspond 
to outgoing waves in the beam pipe. Also. the ± sign 

corresponds to z~O. In the iris region (1.::1 ~ y12, 0 ~ l' < 
b) we similarly write 

+ 

where 
(In = (k" - p~/b2)l/'2. 

11atching Er(r, Y12) in the interval 0 ~ r ~ a leads to 

where 

~Pm"Hn 
n=1 

a kg (limb) - cos -:-10 -- , 
P,n 2 a 

lb nll'h (P:r) h (p~r) 
(bla )Pm h (Pn )JO(Pm bla) 

p~/b2 - p;,,/a"2 

Matching He in the region 0 ~ r ~ b leads to 

(6) 

(7) 

(8) 

(U) 

. Bn (lng b2 ~ co Am 
)-tan-.- -;-Jj(Pn) = ~ -Prnn. (10) 

(l" 2 2 (lm 
nt=l 

Our task is to solve Eqs. (8) and (9) for A. m and Bn. 
In the earlier report [1] we eliminated BTl and obtain a 

linear set of equations for Am. \Ve now instead eliminate 
Am to obtain the matrix equation 

( 11 ) 
n' 
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where 

+ 

and 

(12) 

Circular Hole in a Thick Wall 
Perpendicular to the Beam Axis 

The result for a circular hole in a wall perpendicular to 
the beam axis can be obtained by proceeding to the limit 
a --+ 00 in Section 2. In this limit the main contribution to 
the sum over m comes from large m, and the sum over m 
can be converted to an integral over x = Pmb/a, with an 

(13) interval dx == "b/a. 

Note that the matrix M is symmetrix in n <--+ n'. 

The contribution of this source term to the impedance 
can be written as an integral of the fields over the surface[2] 
at z = ±g /2, b ::; r ::; a. Although this is directly obtained 
in terms of the coefficients Am, we use Eq. (8) to express 
it in terms of Bn as Zeven = Zo( 111 + 112), where 

and 

(1.5 ) 

The quantity 111 can be explicitly calculated, and 112 can 
be put into the form 

(16 ) 

Equation (16) is now in a variational form with respect 
to the coefficients B n , which means that requiring 112 to 
be an extremum subject to the variation of In, leads to 
the matrix equation for 112 in Eq. (15). For this rea'3on, 
truncation of the matrix can be expected to lead to fairly 
accurate results for 112. In fact, if we solve Eq. (11) for Bn 
by writing 

Let us start with 111 + 113 in Eq. (21) which can be 
written as 

2kb L Jo
2 (x m ) 1 

+ (22) 
111 113 = - . Ik 2b2 .. 2 2 J2( ) , 

" m V - Xm Pm 1 Pm 

where Xm = Pmb/a. In order to obtain convergence as 
m --+ <X', we rewrite Eq. (22) as 

+ 2kb f= f6\X m
) [ ? ~ 0 - ~l (23) 

" m=1 p;;,JJ{Pm) y!k-b- - x;;, kb 

The first sum over m can be done explicitly and leads to 

(24) 

The second term in the sum in Eq. (2:3) now can be 
evaluated in the limit 1'n - x,, leading to 

1 a 1 j'C0 dl., [1 ] 
!I) + 1I3 = -tn (-) + - -Jo(kbl) VJ=t2 - 1 

7r b 7r . [) t 1 - i-
(25) 

Bn = -cos k2
q 
L(M- 1 )nn I In l 

which converges satisfactorily at t - 0 and at t -x as 
(17) long as kb i= O. In fact, we can show that 

,,, 
our fina'! expression for 112 becomes 

1 j 
1L) + 1L3 - -[L'nka + C] + -, kb - 0, 

Jr 2 
(26) 

(18) where C = .577 is Euler's constant, and 

A parallel calculation for the odd problem (Er is odd in 
z, Ez and Ho are even) leads to Zodd = Zo( H3 + 114), where 

(19) 

and 

(20) 

Here the matrix N is obtained from Af by replacing 
tan(O"ng/2) by - cot(O"ng/2) in Eq. (12). Note that 

_ 2k ~ JJ(Pmb/a.) 
111 + lL3 - - L ~ 0 

" 8",P;',.]1(11",) 
111=1 

(21) 

is independent of g. 

(27) 

The calculation of 112 and tL4 proceeds in a similar way. 
although here there are no divergent terms as a - x'. 

One can show that 112 and 114 vanish when kb --+ O. This 
is confirmed in the numerical calculations where the result 
in Eq. (26) appears to be correct for Z(k)/Zo in the limit 
kb --+ 0, alb --+ 00, independent of 9/b. 

Numerical Results 

\Ve have constructed a numerical program which uses Eqs. 
(21), (18) and (20) to explore the dependence of Z/Zo on 
the three parameters kb,y/b and a/b. Results for 9 = (J 

were found to agree with results obt.ained earlier using a 
different analysis and computational procedure.[3] 
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In this paper we explore the limit alb ----+ 00 numerically. 
We find, in agreement with others[4], that the real part of 
the impedance becomes infinite. In our numerical work we 
therefore calculate R' + jX = ZIZo - (1/,7r)€n(alb), which 
remains finite as alb ----+ 00. The validity of this approach 
is shown in Fig. 1 where R' and X are plotted against kb 
for g = 0 and for alb = 1000, 100,25,10. For each value 
of alb there are high frequency oscillations with phase ka. 
In our calculations the plot ted points are an average over 
each such oscillation. Even for alb as low as 10, R' and X 
differ from the infinite alb result by less than .02. 

In Fig. 2 we plot R" = 'R(ZIZo) - (l/7r)€n(ka) and 
X for g = 0 in the low frequency region 0 < kb < 2 for 
alb = 1000,100. The results confirm the limits of R" = 
C/7r = 0.184, and X = 1/2, implied by Eq. (26). 
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The dependence on g Ib is shown in Figs. 3 and 4 where kb 

R' and X are plotted against kb for alb = 100 and glb = Fig. 2. R" and X vs. kb for g Ib = 0, alb = 1000,100. 
0,0.2,1,5. Clearly there is structure related to the value of 
glb. But the results differ from the g = 0 smooth result by 
less than .05 over the entire range of kb and this difference 
decreases as kb increases. 
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Fig. 1. R' and X vs. kb for glb = 0, alb = 1000, 
100,25,10. 
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Fig. 3. R' vs. kb for alb = 100, glb = 0, .2, 1,5. 
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Fig. 4. X vs. kb for alb = 100, glb = 0, .2, 1,5. 
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