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Abstract 

A distribution of deflecting-mode frequencies in the constituent 

cavities of a linear accelerator can lead to Q-independent damping 
of cumulative beam breakup. A probability density for the 
deflecting-mode frequencies generates an effective transverse wake 
function. The effective wake function can be used to calculate the 
transient dynamics of cumulative beam breakup within the framework 
of a continuum approximation provided the transverse beam 
displacement changes little over the correlation length of the 
deflecting-mode frequencies as the beam moves down the linac. We 
adopt this approach to show that the damping induced by the effective 
wake function causes the rate of approach to the steady state to 
depend strongly on the operative probability density for the 
deflecting-mode frequencies. 

Introduction 

In an earlier paper [1], hereafter called Paper 1, we developed 
an analytic formalism of cumulative beam breakup (CBBU) in linear 
accelerators with periodic beam current. The equation of transverse 
motion was expressed using a continuum approximation in which the 
discrete kicks in transverse momentum imparted by the cavities are 
considered to be smoothed along the linac, and it was solved by 
Fourier analysis. We used the formalism to study the role of a 
distribution of deflecting-mode frequencies on steady-state CBBU, 
showing that the principal effect is the replacement of the single­
mode wake function by an effective wake function which depends 
strongly on the assumed probability density of the deflecting-mode 
frequencies. The problem of transient CBBU was not investigated in 
detail, but we observed that the effective wake function defined in the 
context of steady-state CBBU could also be used to study transient 
CBBU provided the transverse displacement does not change 
significantly over distances comparable to the correlation length of 
the deflecting-mode frequencies. Based on this observation, we 

reasoned that for deflecting modes with infinite Q the transient 
CBBU, and in particular the rate of approach to steady state, would 
also depend strongly on the assumed probability density of the 
deflecting-mode frequencies, and not just on the frequency spread. 

Previous investigations support this reasoning. Colombant and 
Lau [2] find an algebraic decay to the steady state with a uniform 
probability density of deflecting-mode frequencies. By contrast, a 
Lorentzian probability density gives an exponential decay like that 

produced by a finite deflecting-mode Q [3]. Gluckstem, Neri, and 

Cooper [4,5] investigate transient CBBU for a beam of (j -function 
bunches in terms of the root-mean-square (rms) frequency spread for 
the case that the frequency spread is small compared to the frequency 

spread associated with Q. They find a decay which is faster than 
exponential. None of these investigators, however, explicitly identify 
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the influence of the shape of the probability density on the rate of 
approach to the steady state. 

In this paper we calculate explicitly the transient CBBU for both 
Gaussian and Lorentzian probability densities of deflecting-mode 
frequencies. These calculations illustrate how to apply our formalism 
given an arbitrary probability density. In the process, we confirm 
our earlier conjecture that the rate of approach to the steady state 
depends strongly on the shape of the probability density. 

Equation of Transverse Motion 

According to Paper 1, the equation of transverse motion for a 
coasting beam is 

Here, a is the longitudinal coordinate normalized to the linac length; 

f and K represent the CBBU coupling strength and the focusing 

strength, respectively; w(a) is the angular frequency of the deflecting 

mode distributed according to the probability density](w) around the 

mean frequency wo; r=wot is the time normalized to wo; 

F(f) "" l(f) / I is the form factor defined in terms of the beam current 

l(f) and the average current I; and w(n is the wake function for the 
single deflecting mode: 

wm = ume-r/2Q sinr, (2) 

where u(n is the unit step function. 

We first average eq. (1) over a length ~a around a: 

x(a,n "" - da x(a ,f) . - I I a.f.a I I 

~a a 

(4) 

We assume that the length ~a can be chosen small enough so that 

there is no appreciable beam breakup over ~a. We can then replace 

x by x and take x out of the second integral in eq. (3). On the 

other hand, we assume ~a is large enough so that between a and 

a+~a the deflecting-mode frequency takes all possible values so that 

it can accurately be represented by the probability density ](w). In 
that case, we have 

1 I a.f.a [w (al
)] I .~ [W] -- da'w --r = dww -r f(w) "" wm, (5) 

~a a Wo -00 Wo 

where wm is the "effective wake function." In Paper 1 we showed 
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that, for a symmetric normalized probability density defined as function, the equation for the saddle points 8, is 

g(Z) "" wJ [wo(Z + I)] where Z"" (wi wo) -1, the effective wake 
function is 

(6) 

in which g (Z) is the Fourier transform of g (D. If these assumptions 
are satisfied, then the equation of transverse motion takes the form 

(7) 

In what follows, we solve eq. (7) for transient CBBU using the 

[w '(8,W = 42 [1 -slw(8)]. (15) 
S2 

Upon substituting from eqs. (12) and (13), retaining terms through 

order a, and letting 1f "" e; , we are left with 

[(1f-l)4 +sN-l)3 -s~1f] (1f-l)2 

+2a[sp1f+ 1)(1f-l)3 -12s~1f(1f+ I)] = O. 
(16) 

methods of Paper 1. The growth rate is given by rr=Re[f(8)]; thus, upon solving eq. 

Gaussian Probability Density 

According to eq. (6), the effective wake function corresponding 
to a Gaussian probability density of deflecting-mode frequencies with 

mean Wo and standard deviation .:lw can be written in the form 

wW = wWexp( -ar2) , (8) 

in which a "" (.:lw)2/2w~. The Fourier transform of the wake 
function is 

• [ ) 112 w(Z) = f ~ dre-iZ,wW =.!.. ~ [W(z_) - W(U] , 
-~ 4 a 

in which 

(9) 

z = e e c -I .. , Z± = __ , an = 1 _ +1 Wi( ) - -z' rji. (.~) - 8 ± 1 d 8 - . [1 ·z] 
2.ra 2Q 

We assume Iz± 1 ~ 1 because .ra ~ 1. Thus, we take [6] 

W(z):: __ +_+_ , i [1 1 3) 
.;; Z 2z3 4z 5 

(10) 

-:: -- -+-dW i [1 3) 
dz .;; Z2 2z 4 . 

(11 ) 

Substituting for z± and keeping terms through order a gives 

(12) 

(13) 

We consider a direct-current beam generating an impulse 
excitation of the wake field, i.e., the beam enters the linac such that 

x(OJ) = xooW. Results for bunched beams or for other initial 
conditions can be gleaned from this case by inspection of Paper 1. 
Solving the equation of transverse motion results in an expression for 

the transverse displacement x(u,D involving an integral over 8. An 

analytic expression for the transient CBBU growth rate r valid when 
BBU is pronounced is found by evaluating this integral by steepest 

descent. The saddle points are calculated by setting f( 8) =0, where 

(14) 

(16) for 1f, we can evaluate r from 

r= Iml#[I+~ [1+12a~)ll· (1f-l)2 (1f-1)2 
(17) 

Because a distribution of deflecting-mode frequencies will have 
its greatest influence on long pulses, we restrict our discussion to 

long pulses (domains A and B of Paper 1) for which S2 is small. For 

these cases, we write 1f in the form 

1f:: 1 +.:l + a1f I' l.:ll « 1, a1f 1 « .:l ; 
where .:l is given by 

(18) 

(19) 

Upon substituting 1f from eq. (18) into eqs. (16) and (17) and 

retaining terms to order a, we find 

(20) 

r:: (21) 

Having established the needed formalism here and in Paper 1, we 
can now find the saddle points, growth rates, and beam envelopes by 
inspection. For each domain they are as follows: 

Domain A: S2 ~ S~12 and S2 ~ s~ (weak focusing, weak BBU 

coupling, long pulse length); .:lwlwo ~ (sils
l
)113. In terms of the 

dimensionless parameter 

E, ~ [~ 1 '''r. (,,,, lJ'" , (22) 

the dominant saddle point and growth rate are, respectively, 

(23a) 

(23b) 

and the beam envelope (with infinite Q) is given by 
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· (24) 

The exponent reaches its maximum value 

Q =wo/2dW. Thus, the beam envelopes found in Paper 1 apply 
directly, and for impulse excitation of the wake field, they are: 
Domain A: 

I _IE: [ 3..[3 - dW 1 Ix(a,D - xo-_exp __ E ... -r 
r..j6;" 4 Wo 

(32) 

(rD - - - _fer _ 3..[3 [ 3 ) 114 [wo ) 1/2 

max 5 20 dw (25) The exponent reaches its maximum value 

at 

(26) 

These are the same results found by Gluckstem, Neri, and 

Cooper [5] for a beam of /) -function bunches in which case r is 

replaced by MWoT, where M is the bunch number, and T is the 
bunch period. These authors use a different method of calculation 
for which they claim to assume the bandwidth of the frequency 
distribution is small compared to the intrinsic bandwidth of the 

deflecting mode associated with finite Q [4,5]. However, they have 
confirmed the validity of eq. (24) with numerical simulations in the 
absence of this assumption. With our method we make no 
assumption about the bandwidth of the deflecting mode and have 

included the case of infinite Q at the outset. 

Domain B: s~ 00( S2 00( 1 (strongfocusing, moderate BBV coupling, 

moderate pulse length); dw I Wo 00( ~. In terms of the dimensionless 
parameter 

(27) 

the dominant saddle point and growth rate are, respectively, 

(28a) 

(28b) 

and the beam envelope (for infinite Q) is given by 

(29) 

The exponent reaches its maximum value 

(30) 

at 

rmax = ~ [ :: r f: . (31 ) 

Lorentzian Probability Density 

In Paper 1 we show that a Lorentzian probability density of 

deflecting-mode frequencies with mean Wo and half-width at half 

maximum dW generates an effective wake function with infinite Q 
which is identical to the single-mode wake function with finite 

(33) 

at 

Domain B: 

= 33/4 
[[ Wo ) 3 ] 112 t - - fer max 8 dw 

(34) 

Ix(a,DI (35) 

The exponent reaches its maximum value 

(36) 

at 

(37) 

Conclusion 

We have calculated the transient cumulative beam breakup with 
Gaussian and Lorentzian probability densities of deflecting-mode 
frequencies. The results for long pulses in the limits of weak and 
strong focusing indicate that the Gaussian generates the fastest decay 
to the steady state. Specifically, during decay with weak focusing the 

exponent behaves like rr ex - r5/3 for the Gaussian and likerr ex - r 
for the Lorentzian, and with strong focusing the exponent behaves 

like rr ex - r3/2 for the Gaussian and again like rr ex - r for the 
Lorentzian. This is caused by the faster decay of the effective wake 
function associated with the Gaussian, and confirms our conjecture 
that the rate of approach to the steady state depends strongly on the 
shape of the probability density. The mathematical expressions for 
the locations and magnitudes of the beam-envelope peaks are similar. 

The physical meaning of the "bandwidth" dW is different in the two 
cases, however. For the Gaussian it is the standard deviation, and 
for the Lorentzian it is the half-width at half maximum. 
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