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Abstract 

The transverse dynamics of a nonrelativistic, mismatched, one­
dimensional sheet beam propagating through a continuous, linear 
focusing channel is investigated. The investigation is based on the 
Fokker-Planck equation in which the relaxation rate and diffusion 
coefficient are calculated from a simple model of turbulence resulting 
from charge redistribution. 

Introduction 

This paper concerns the dynamics of transverse emittance growth 
for nonrelativistic space-charge-dominated beams in continuous, 
linear focusing channels. Mismatches in both the density profile and 
root-mean-square (rms) beam size [1,2) contribute to the emittance 
growth. A mismatched beam carries excess total energy which can 
be thermalized if nonlinear forces, instabilities, and/or collisions are 
present. The resultant heating generates emittance growth, and the 
magnitude of the possible emittance growth can be calculated from 
the excess total energy [2). 

The earliest evolutionary stage after the beam enters the focusing 
channel is marked by charge redistribution. In a zero-temperature 
beam, the trajectories of the individual beam particles do not cross, 
and laminar flow is present. However, if the initial density profile 
gradually falls to zero at the beam edge, then laminar flow will cease 
very quickly, at about one-quarter of a plasma period after injection, 
at which time particle trajectories originating in that part of the beam 
with the lowest initial density will cross [3). The termination of 
laminar flow is marked by nonlinearity in the form of discontinuous 
shock-like behavior associated with wave-breaking in phase space and 
the onset of irreversible dynamics [3,4). The charge-redistribution 
phase in a warm beam terminates similarly [3). 

While the charge-redistribution phase lends itself to simple 
analysis, the subsequent evolution is more complicated. Yet, an 
understanding of this evolution is essential because it will dominate 
during almost the entire transport of real beams. To date, this 
problem has been investigated by way of both direct experimentation 
[5,6) and computational N-body simulations [1,7,8). These 
investigations have provided an accurate picture of the dynamics for 
the special cases considered, but they have not provided a synthesized 
account of the underlying physics. The purpose of the present paper 
is to integrate the essential physics into a single formalism 
reproducing the salient dynamical features revealed in prior 
investigations. 

Formulation of the Problem 

During the charge-redistribution phase, the beam evolves toward 
a density profile which is nearly uniform, particularly if the beam is 
strongly dominated by space charge. If this nearly uniform beam is 
mismatched to the transport channel, it carries free energy available 
for thermalization. The shock-like behavior and wave breaking in 
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phase space ending this phase are nonlinear phenomena which may 
trigger strong, localized turbulent fluctuations. Resonant coupling 
between beam particles and the turbulence provides a mechanism for 
converting free energy, now contained in the turbulent fluctuations, 
into heat. In strong turbulence the heating will occur very rapidly, 
on a time scale of the order of a plasma period [9). Because 
thermalization occurs at the expense of the energy contained in the 
turbulent fluctuations, the turbulence also weakens on the same time 
scale. 

Beam particles slow down by colliding with turbulent fluctuations 
of the mean electric field. This anomalous resistivity also occurs on 
a time scale of the order of a plasma period in strong turbulence. 

The associated average collision frequency is then - g -I == nA~ times 

larger than in a quiescent plasma [9), where n is the number density 

and AD is the Debye length. In space-charge-dominated beams g-I 

is large and collective effects appear. In weak turbulence the average 

collision frequency is - gl/2 times smaller than in strong turbulence. 
Scattering off turbulent fluctuations is considered to impart white 

noise on particle trajectories, thereby establishing a Markov process 
resulting in Brownian motion. The scattering creates dynamical 
friction and diffusion, causing relaxation to occur on a time scale 
which evolves from short to long as the turbulence dissipates. 
Heating and relaxation of the beam eject a fraction of the particles 
into large-amplitude orbits causing a halo to form with associated 
emittance growth. Because the relaxation time can be very short, 
these processes can occur during beam transport. 

These considerations motivate using the Fokker-Planck equation 
for the evolution of a coarse-grained distribution function in the 

phase space of a single beam particle. We letW(~li,t;~, ~)dXdu 
denote the probability of finding a particle with position x and 

velocity u in the range (~x+ dx), (Ii, u +du), respectively, at time 

given it started at (~,~) at t=O. The Fokker-Planck equation is 

aw +uoVW+KoVW= {3V O(Wu)+{3kTV;W, (1) at x • • m 

where K is the net force per unit mass m, {3 is the relaxation rate, 

k is Boltzmann's constant, and T is the temperature. The net force 
is the superposition of the focusing force and the space-charge force 

found from the potentials <l>J and <1>" respectively, and thus 

- q-
K = - - V (<I>J + <I> ) , (2) m x , 

where q is the particle charge. According to Poisson's equation, <1>, 

is given by 

V;<I>,(~t) = - ~: J duJ d~ J d~W(~li,t;~, ~)W(~,~), (3) 

where N is the total line density, Eo is the permittivity of free space, 

and W(~,~) is the single-particle distribution function at t=O. 
The temperature will generally depend both on position and time. 

However, if the turbulence is initially strong enough to induce rapid 
heating and relaxation, and if most of the beam particles scatter off 
the strong fluctuations, then to a reasonable approximation the beam 
may be regarded as isothermal with an increasing temperature which 

saturates as the turbulence weakens. Letting {3, denote the relaxation 
rate in the presence of strong turbulence, we adopt an exponential 
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model of turbulent heating: 

T(I) = Too + (To-Too) exp(-{3,I). (4) 
Starting from temperature To, the beam strives to reach a Maxwell-' 

Boltzmann distribution with temperature T~. 
To obtain a self-consistent solution, one must solve eqs. (1)-(3) 

simultaneously using eq. (4) to represent turbulent heating. For 
mathematical simplicity we treat a one-dimensional (10) sheet beam 

centered on the focusing-channel axis with a focusing force -mw2x. 
We pick a particular beam cross-section and calculate its properties 
as it moves down the transport channel. Our treatment is easily 
generalized to higher dimensions, and the qualitative features of the 
results should be insensitive to the dimensionality. 

Analytic Solution with Harmonic-Oscillator Orbits 

Assuming {3 <c {3, to be a constant in eq. (1) associated with weak 
residual turbulence, and using a harmonic-oscillator model of the 
particle orbits, we can solve the problem in closed form with 

standard methods [10]. We take -mw;x to be the net restoring 

force, where w. is the particles' orbital frequency. This assumed 
force replaces Poisson's equation, and thus self-consistency is 
sacrificed. However, the approach is instructive because it leads to 
simple results exhibiting many of the prominent features of self­
consistent solutions discussed below. Moreover, the resulting 
distribution function may be used to calculate any of the moments of 

x and u in terms of elementary functions. 

In the limit of instantaneous heating ({3, --. 00), the rms beam size 

a "" <X2) 1/2 and emittance f "" [<X2) <u2) - <xu) 2 jl/2 , normalized 

to their values at 1=0, are respectively found to be 

where wi "" w~-{32/4, T~/To=(aola,,,Y(fo.lfo)2, and ao' fo' aoo,foo 

are values at 1=0, 1--. 00 , respectively. The ratios a"" I ao and foo I fo 

can be determined from force-balance and energy-conservation 

arguments [2]. Example plots of a and f appear in Fig. I(a). 

particle distribution function into complete sets of orthonormal 
polynomials [11]. For the 10 sheet beam a natural choice for both 
coordinate and velocity space is the set of 10 quantum mechanical 
harmonic-oscillator eigenfunctions: 

W(X,U,I) = <Po"'oL L c;<pm "'.' (7) 
".-0 "-0 

[ ]

1/2 

_1_ [~] 1/2 H.(/Ax)e-Ax'/2, 
'2!j! 11" J 

2 

A "" mwo (8) 
2kT(I) , 

[
_1 [~] 112]1/2 H (.;;. u) e-a.'/2 , 
21k! 11" 1 

m . (9) 
2kT(I) , 

where C;(I) are time-dependent coefficients, Wo is a reference 

frequency, and Hi are Hermite polynomials. By symmetry, the 

coefficients c; for which m +n is odd are zero. Moments of special 
interest are the number density and rms beam size and emittance, 
which are respectively given by 

oo 

n (x,l) = N<PoL c~ <P1p , (10) 
p-O 

:(~ = { Ti:) [1 +12 C~(I)] } 1/2, (11) 
~ = T(I) {[1 +12 c6(t)] [1 +12 c~(t)] - [C;(t)]2 f'2 . (12) 
f(O) To 

Integrating n(x,l) over all values of x must always yield N; 

conseq uently, we must have cg (I) = 1 for all I . 

If turbulence is initially strong enough to cause rapid heating and 
relaxation, and if most particles scatter significantly off the electric­
field fluctuations as they orbit, then to a reasonable approximation 
the relaxation rate may be considered a function of time only. The 
turbulence is expected to pass rapidly from strong to weak, so we use 

eq. (4) for turbulent heating and, as before, we let {3 « (3, be a 
constant in eq. (1) to represent persistent weak turbulence. 

Upon substituting for W(x,u,l) in eqs. (1)-(3) and using the 

orthonormality of <Pj and "'1 along with the recurrence relations for 

Hi' we obtain the following infinite system of coupled differential 

equations for the coefficients c.m : 

c; = -(tI2T)[vm(m-I) c;:-2+ vn (n-I) c.~2+(m+n)c':"1 
- n({31 wo)c,:" + .;;;-(rn C;:_~I +.;;;;1 C;::;I) - (wI wofrn (13) 

X (rm C;:_~I +vm+l C;:_~I) + (w/wo)2VToIT.;z;;-t c:.-I~' 
j-O 

where the dot denotes differentiation with respect to r"" wJ; 

2 Nq2wo 
W = (14) 

p 2foV1I"mkTo 

is the plasma frequency; and 
oo 

q - q ~ 20 q( ) (15' Kp - Jl.p - L..J Co IIp n , ) 
.-1 

Using a constant relaxation rate {3 results in the rise time of the in which 

emittance being determined by (3, even with instantaneous heating 
from the initially strong turbulence. 

Self-Consistent Numerical Solution 

We solve eqs. (1)-(3) self-consistently by decomposing the single-

(-I)(P-q-1)/2(p +q + I)! 
JI.;= ------~===----------------

2P+Q+112Vp!q! (P-q)[(P+q+l)/2J! 
(16) 

,,;(n) = r[n +(q-p)/2] r[I - n +(q+p)/2] r [n - (q-p) 12] . (17) 

1I"V211"p!q!(2n)! 
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This infinite system of coupled differential equations is equivalent to 
the coupled Fokker-Planck and Poisson equations. The second-to-last 
term in eq. (13) originates from the linear focusing force, and the last 
term originates from the nonlinear space-charge force. 

Upon truncating the system at m =M and n =N, it can be solved 

by standard numerical integration [12). We set M =4, N =3 to allow 

for two time-dependent coefficients cJ, c6 in eq. (10) for the density. 
This is sufficient to represent the underlying physics and establish a 
first approximation to the numerical solution; however, the accuracy 

can be improved as desired by continuously increasing M, N until 
essentially no change is seen in the results. Our truncation leaves 
nine equations with nine unknown coefficients. They are solved for 
a beam which is initially Maxwellian in velocity space with a 

Gaussian density profile of standard deviation a~ = 1 IU(O); the initial 

conditions are c;'(r=O) =15,"". 
Example plots of a and E in a self-consistent calculation appear 

in Fig. 1(b). Though the details of these curves differ from those of 
the analytic solution [Fig. l(a»), the qualitative features are similar. 

In particular the relaxation rate (3, assumed here to be constant, 
determines the rise time of the emittance. Plots of the corresponding 
density profile are depicted in Fig. 2. As the beam relaxes, more 
and more particles are injected into high-amplitude orbits. 
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Fig. 1. RMS beam size and emittance, normalized to 1=0, (a) from 

harmonic-oscillator model of particle orbits with (w.l wo)2 = 1.5 and 

{3=0.015 in the limit {3,-+oo; (b) calculated self-consistently with 

(wi wo)2 = 1.5, (wpl wo)2 = 1.4, {3.1 Wo = 1.0, and (31 Wo =0.015. 

Discussion 

As described here, the mismatched beam evolves on time scales 
short compared to the transit time of the beam through the transport 
channel. The associated spread in the density profile may be 
problematic if the transport elements have small bore-hole apertures. 
For example, in the design of high-current machines for long-term, 
continuous-wave operation, radioactivation from beam impingement 
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Fig. 2. Snapshots of density found with parameters of Fig. 1(b). 

is a concern. Since the growth in beam size and emittance correlates 
to the degree of mismatch [2), the cure involves both reducing 
sources of mismatch and increasing the bore-hole sizes. 

We based our calculations on a simple model of turbulence which 
was assumed to be strong initially, causing rapid heating of the beam, 
and to dissipate quickly to persistent weak turbulence. The relaxation 
rate was taken to be a constant associated with weak turbulence, and 
was regarded as a free parameter. Since both the diffusion 
coefficient and relaxation rate in the Fokker-Planck equation are 
determined by the spectrum of electric-field fluctuations, it would be 
interesting to study the time-dependence of the fluctuation spectrum 
using N-body simulations. This may lead to more accurate models 
of the Fokker-Planck coefficients which could then be readily 
incorporated into our self-consistent numerical formulation. 
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