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Abstract 

A model has been developed to analyze the static and dynamic 
behavior of superconducting accelerating cavities operated in self­
excited loops in the presence of phase and amplitude feedback, 
ponderomotive effects, and beam loading. This is an extension of an 
earlier analysis of the stabilization of superconducting cavities [1] 
which has been the basis of the control system of several 
superconducting accelerators but did not include beam loading. 
Conditions have been derived to ensure static and dynamic stability 
in the presence of ponderomotive effects (coupling between the 
mechanical and electromagnetic modes of the cavity through the 
radiation pressure). Expressions for the effect of fluctuations of 
cavity frequency and beam amplitude and phase on the cavity-field 
amplitude and phase and beam-energy gain have been obtained. 

Introduction 

One of the early challenges in the application of rf 
superconductivity to particle accelerators, especially ion accelerators, 
was in the control and stabilization of the phase and amplitude of the 
accelerating fields in the large number of independent cavities. 
Ambient noise and microphonics can cause frequency variations 
which are larger than the bandwidth of the resonators. Additionally, 
even in the absence of microphonics, the radiation pressure exerted 
by the rf field on the cavity wall leads to a frequency shift which 
usually is larger than the bandwidth. Such nonlinear behavior can 
lead to instabilities: a monotonic instability where the field 
amplitude jumps between two stable values, and an oscillatory 
instability where energy is transferred between the electromagnetic 
and mechanical modes of the resonator yielding a sustained sinusoidal 
variation of the cavity frequency and the cavity wall displacement. 

The problem of phase and amplitude stabilization of low­
velocity superconducting structures was successfully solved in the 
1970s by two different methods. The first one involved the direct 
control of the cavity frequency by using a voltage-controlled variable 
reactance which could be electrically connected to or disconnected 
from the cavity [2]. By adjusting the repetition rate and the duty 
cycle of the control of the reactance, the phase of the fields in the 
cavity could be made to track an external phase reference. 

The other method did not attempt to control the cavity 
frequency. Instead, the cavity was purposely overcoupled in order 
to broaden its bandwidth and it was operated in a self-excited loop. 
The cavity eigenfrequency was left unperturbed, but the loop 
oscillation frequency was controlled by introducing an additional 
amount of phase shift in the loop [1]. This method has the advantage 
of providing stable operation in the unlocked state since the loop 
frequency automatically tracks the resonator frequency. This method 
has been used in a number of low-velocity ion superconducting 
accelerators [3-6] and also in an electron accelerator [7]. 
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In all the existing superconducting ion accelerators, the beam 
current was small enough that the beam did not affect the dynamics 
of the fields in the cavities. However, work is in progress on the 
application of rf superconductivity to high-current ion accelerators 
where the beam itself is expected to affect the cavity field. Beam 
loading can either simplify or complicate the stabilization of 
superconducting cavities. Clearly, if the current is high enough, the 
loaded bandwidth can be much larger than the frequency variations, 
and the cavity can simply be driven by an external rf source and the 
fields will be stable. On the other hand, there can be currents where 
the loaded bandwidth will be larger than the intrinsic bandwidth while 
still being comparable to the frequency fluctuations due to 
microphonics and ponderomotive effects. In this case, the effects of 
the beam current, microphonics, and ponderomotive effects will need 
to be included in the analysis of the stabilization system. 

In this paper we extend the analysis of the phase and amplitude 
stabilization of superconducting resonators operated in self-excited 
loops which was developed in [1] to include arbitrary amounts of 
beam loading. 

Loop Equations 

A resonator operating in a self-excited loop is shown 
schematically in Fig. 1. The resonator acts as a bandpass filter; its 
output is sent through a phase shifter, a limiter, and an attenuator and 
then used as its input. The loop phase shifter is used to establish 
oscillation and sets a constant difference between the resonator 
eigenfrequency and the loop frequency. If the resonator frequency 

IS we' the loop will oscillate at the frequency w given by 

w=w 1+ __ 
[

tan 8/] 
e 2Q 

where 8/ is the loop phase shift and Q is the loaded quality factorof 
the resonator. The limiter and the attenuator provide a constant 
drive amplitude for the resonator independent of the resonator field 
amplitude. Amplitude feedback is provided by adding a signal in 
phase which is controlled by the amplitude error. Phase feedback is 
provided by adding a signal in quadrature which is controlled by the 
phase difference between the resonator and an external reference of 

frequency wr . 

In [1] it was found advantageous to operate the loop slightly off 

resonance on the low frequency side (8/ < 0); this introduced a small 
amount of coupling between phase and amplitude feedback which 
could be used to damp the microphonics. In the present model we 

add a feedback phase shifter (8j ) which can be used to provide the 
same amount of coupling while still operating the unlocked self­

excited loop on resonance (8/ = 0). 

In the case of high-current accelerators, the fields in the 
resonator will also be affected by the beam which is assumed to have 

the phase <Pb with respect to the external reference. The differential 
equation for the resonator field is then 

Proceedings of the 1992 Linear Accelerator Conference, Ottawa, Ontario, Canada

TU4-27 371



2. 2. 
- v - - Vb' 
TO g TO 

where Vb = Vb exp [i(w, t + <pJ] , 

V pO 2 ,61/2 [1 + exp(i 8
j

) (~Vg + i~t)] exp[i (81 + a)] 

ibR,h ~ 
Vb = -2- and VpO = VR,hP inc ' 

and ib is the beam current, R,h is the resonator shunt impedance, 

P inc is the power driving the resonator, ~Vg is the additional "in 

phase" signal providing amplitude feedback, ~t is the additional "in 

quadrature" signal providing phase feedback, ,6 is the coupling 

coefficient, and To is the intrinsic decay time of the cavity. 
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Fig. 1 Block diagram of a resonator operating in a self-excited 
loop in the presence of beam loading with phase and 
amplitude feedback. 

If we define V = Vexp(ia) where V is the real amplitude of the 

resonator field and a its absolute phase, then, after separating real 
and imaginary parts and neglecting changes of amplitude and 
frequency during one rf period, the equations for the resonator field 
amplitude and phase are 

To V+(1 +,6) V = 2,61/2 VpO[ cos81 +~Vg cos(81+8) -~tsin(81+8j)]- Vb COS<P, 

VTo(w-w) = 2,6112 VpO[ sin81+~vg sin(81+8j) -~t cos(81+8j )]- Vb sin<p, ' 

where <f', is the instantaneous phase between field and beam and 

ex = w, the instantaneous loop frequency. 

Steady State 

When the loop is unlocked and the beam is off, the steady state 
amplitude is found from the above equations 

2,61/2 
Vo = -- V pO cos81 1+,6 

When the beam is on and the loop is locked to the frequency 

w" the amount of steady state amplitude and phase feedbacks which 

are required to still maintain the amplitude Vo in the resonator are 

~vsO = cos8Icos(81+8) C :,6(1 +YoY) + (Y'-YI)Y] 

~to = cos8Icos(81+8j ) [1 :,6(Yo-Y) + (Y'-YI)] , 

where Yo = tan<po' YI = tan8/' Y = tan(81 + 8j ) and the detuning y, and 

the beam loading coefficient bare 

To Vb cos<Po 
y, = tan8, = 1 + ,6(w, - w) and b = Vo ' where <Po is the 

nominal phase between field and beam as indicated in Fig. 2. 

Fig. 2 Phase relationships between the signals driving the 
resonator. 

The detuning y, and the cavity coupling coefficient ,6 can be 
optimized to minimize the amount of forward power required to 

provide an energy gain Vo cos <Po to a beam of current ib with phase 

<Po' The optimal values are ,6 = b + 1 and Y, = - b: 2 tan <Po 

Transient Analysis 
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Fig. 3 Phase relationship between the beam and the cavity field. 

The loop equations can be linearized around the steady state 
using (cf. Fig. 3) 
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v = Vo(1 + OV) 

t..t = t..to + ot 

'P, = 'Po + O'Pb - O'P 

t..Vg = t..VgO + OVg , 

Vb=Vb(P+OVJ ' 

to provide the differential equations for the deviations from steady 
state which are 

cos(9 +9) 
To CiV + (1 +(3)ov = I (1 +(3)(ov - Y Cit) 

cos9
1 

g (1) 

- b oVb + b Yo (O'Pb -o'P) , 

Applying the Laplace transform to Eqs. (1) and (2), the system 
can be represented in the block diagram form shown in Fig. 4 where 
the transfer functions are 

m 
1 +TS 

G op-' 

Fa : Amplitude Feedback, 

TO 
T =--

1+{3 
b 

Loaded amplitUde decay time, 

Beam matching coefficient. 

G 
"" 

!!!. [1 + YOY,] 
T 1 +TS 

Phase Feedback , 

G~ represents the coupling between the field amplitude and cavity 
frequency which is responsible for the ponderomotive instabilities 

[1]. O~ is the frequency of the mechanical mode of the cavity, andT~ 
is its decay time. 

6v 

Fig. 4 Transfer function representation of the system shown in 
Fig.1 

The residual amplitude and phase errors due to fluctuations of 

the cavity eigenfrequency (ow .. ), beam current (oib ) and beam phase 

(O'Pb) are 

Ov = D-'{ -ow,..(G"" +F",G,,.) +OVb[Gba(S + Gop-' +F",G.)-Gbw(G"" + F",G/a)] 
+O'Pb[G""(S+G",,, +F",G.)-G.,,,(G,,,, +F",G/a)] } 

O'P = D-'{Ow .. (1 +FPaa) +ovb[G, .. ,,(l +FPaa) -Gba(FPaw -G~)] 
+O'Pb[ G "",(1 +FP aa) -G ",,(FP aw -G~)]} , 

The stability of the system in the presence of ponderomotive 

coupling can be determined from D. In particular, if one assumes 

simple proportional amplitude and phase feedback (Fa =ka and 

F", =k",), then the conditions for monotonic and oscillatory stability are 
respectively 

- [Y- ~o 1 k~ v~ < ~ B..,(Ka,K) , 

(3) 

with 

and 

B",,,(Ka ,K.) = ~ [Ka(l +y2) + 1 +yy, - ;}K/ 1 +YYO> + 1 +YoY J] 

h ed K 
-_ k cos(91+9) 

were we us a a __ ~o... 
cos91 

and 

Equations (3) clearly show how beam loading (m;t' 0) modifies 

the region of stability and how phase feedback (K",) can be used to 

reduce the effect of beam loading on stability. 

Further work will investigate parameter optimization to reduce 

the effect of ow .. ' oVb and O'Pb on Ov and o'P. 
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