
A FINITE ELEMENT FIELD SOLVER FOR DIPOLE MODES* 

E. M. Nelson 
Stanford Linear Accelerator Center 
P.O. Box 4349, Stanford, CA 94309 

Abstract 

A finite element field solver for dipole modes in ax­
isymmetric structures has been written. The second-order 
elements used in this formulation yield accurate mode fre­
quencies with no spurious modes. Quasi-periodic bound­
aries are included to allow travelling waves in periodic 
structures. The solver is useful in applications requiring 
precise frequency calculations such as detuned accelerator 
structures for linear colliders. Comparisons are made with 
measurements and with the popular but less accurate field 
solver URMEL[I]. 

Introduction 

The finite element field solver YAP[2] has been ex­
tended to calculate dipole modes to aid the design of 
detuned accelerator structures. The detuned accelerator 
structure is a disk loaded waveguide with cell parameters 
(diameter 2b, disk aperture 2a and disk thickness t) vary­
ing along the structure such that the lowest synchronous 
dipole modes of the cells have a gaussian density distribu­
tion while keeping the phase velocity of the accelerating 
mode constant. The formulation described here yields the 
synchronous dipole mode frequency with accuracy better 
than 30 ppm. An accuracy less than 10-4 is desired. Com­
bined with YAP's high accuracy monopole field solutions 
for the accelerating mode, the parameters of the detuned 
structure can be determined with errors less than machin­
ing tolerances. This design process requires only minimal 
cold-testing and furthermore, with precision machining, it 
could eliminate the need to tune each cell of the structure. 

This paper describes the finite element formulation 
used to calculate the dipole modes and then presents some 
test results verifying its accuracy. 

Finite Element Formulation 

This paper describes an algorithm for finding the mag­
netic field B. Changing the boundary conditions on the 
metal walls will yield the electric field E instead. The 
magnetic field B has three components B z , Bp and B", 
which have an assumed time dependence e- iwt and az­
imuthal dependence eim

¢ with In = 1. Modification of 
the boundary conditions and elements on the axis will al­
low solutions for In #- 1. The interior of the structure in 
the (z, p) plane is n. Consider four types of boundaries: 
r metal, r axis, r left and rright. The last two boundaries 
are the left and right boundaries of one cell of a periodic 
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structure. They are connected by a z translation operator, 
R : rleft ---+ r right. The fields in a periodic structure are 
decomposed into modes with phase advance 'IjJ in accor­
dance with Floquet's theorem. Symmetry boundaries are 
also available. 

Strong Formulation 

Combining Maxwell's curl equations yields the follow­
ing strong formulation for dipole modes: given the phase 
advance 'IjJ, find the eigenvalues w2 / c2 and eigenmodes B 
such that 

w2 

V' X (V' X B) - Z-B = 0 in!1, (la) 
c 

n X (V' x B) = 0 on rmetal, (lb) 

Bz = 0 and Bt/> = iBp on r axiS) (lc) 

n X (V' X B)IRx = -n X (V' X B)lxeil/J 

and B(Rx) = B(x)eil/J Vx E rleft. (ld) 

This formulation does not include all of Maxwell's equa­
tions. In particular, there are irrotational solutions with 
w = O. These unphysical solutions are separate from 
the desired solenoidal solutions which have w > o. For 
solenoidal solutions, the boundary condition (1 b) corre­
sponds to n X E = 0 and also implies n· B = 0 on r metal. 

Boundary condition (lc) states that B is continuous at 
the axis, and boundary condition (ld) is the quasi-periodic 
boundary condition for periodic structures. 

Weak Formulation 

The equivalent weak, or variational, formulation of 
the problem is: given the phase advance 'IjJ, find w2 / c2 and 
B E V such that for all test fields C E V, 

where 

j (V' X C)* . (V' X B) - w
2 

C' . B pd!1 = 0 
c2 

II 

V = {A E H(curl) : 

A(Rx) = A(x)eit/> Vx E rleft, 

Az = 0 and At/> = iAp on r aXiS}. 

(2a) 

(2b) 

The set H( curl) contains all vector fields A for which the 
integral (2a) with C = B = A exists. This condition con­
strains the tangential component of A (i.e., B and C) to 
be continuous across an interface, for example between two 
elements. There is no such constraint on the component 
of the field normal to an interface, but the finite element 
solutions below yield normal components of the field which 
are near continuous. 
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Finite Element Formulation 

In order to solve for the fields on a computer, a finite 
dimensional subspace Vh C V is used in the weak formula­
tion above. A field A E Vh is a linear combination of basis 
functions. Texts such as Strang and Fix[3] and Hughes[4] 
describe the finite element method, where the basis func­
tions are assembled from simple functions on each element. 

In YAP, the domain 0 is partitioned into triangular 
elements, as in the example shown in figure l(a). For each 
element there is a map Xe : n --+ Oe which is used to 
transforms integrals over Oe to integrals over the master 
element n shown in figure l(b). Quadratic maps are used 
to approximate curved boundaries well. Let the coordi­
nates of a point in n be rand s. The map for element e 
gives (z,p) = xe(r,s). 
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Fig. 1 (a) A sphere partitioned into elements. The dotted 
line is the axis and the dashed line is a symmetry 
plane. (b) The master element n and its 6 nodes. 

The finite element basis is inspired by the works of 
Crowley[5] and Nedelec[6]. There are 14 basis functions 
for elements which are not adjacent to the axis, such as 
0], O2 and 0 3 in figure l(a). On such elements the field 
-ipBcp is represented by the usual quadratic lagrangian 
basis functions 

N] = r(2r - 1) 

N4 = 4rs 

N 2 =s(2s-1) 

N" = 4st 

N3 = t(2t-1) 

N6 = 4rt 
(3) 

where t = 1 - r - s. In a typical application of the fi­
nite element method, the lagrangian basis functions would 
also be used for Bz and B p, but this leads to difficulties 
with spurious modes. Instead, YAP constructs vector ba­
sis functions for (Bz, Bp) as follows. Given the element 

map Xe : n --+ Oe, the vectors Vi tangential to side i are 

V
2 

= _ aXe 

as 
V3 = aXe ar . 

The reciprocal vectors Ri normal to side i are 

R] = -(R2 + R3) 

R2 = A ¢ X V 2 

¢. (V2 X V 3 ) 

R3 = A ¢ X V3 
¢. (V2 X V 3 ) 

(4) 

(5) 

Then a set of vector fields easily assembled into H(curl) 
are constructed. The fields Li satisfying Li . Vj = fiij on 
the sides of the element are 

Finally, the 8 vector basis functions are 

N7 = rLI NIO=tL2 N l3 = -2sL3 
Ns = sL1 N 1] = tL3 Nl4 = -2tL1 • (7) 

N g = sL2 N12= rL3 

~ 

N7 

Fig. 2 Examples of vector basis functions for (Bz, Bp). 
The size and direction of the arrows indicate the 
magnitude and direction of the basis functions. 

Elements which touch the axis must enforce the 
boundary conditions there. Elements with one corner on 
the axis, such as 0 4 and 0 6 in figure l(a), have 11 basis 
functions. Assuming node 2 on axis, the basis functions in 
the form ((Bz, Bp), -ipBcp) are 

N] = (0,r(2r - 1) + rs) 

N2 = (0, t(2t - 1) + st) 

N3 = (0,4rt) 

N4 = (-sL],rs) 

Ns = (sL2 , st) 

N6 = (rL], 0) 

N7 = (tL2'0) 

Ns = (tL3, 0) 

N g = (rL3,0) 

N]o = (-2sL3 , 0) 

Nll = (-2tL],0). 

(8) 

Elements with one side on the axis, such as 0" and 0 7 

in figure l(a), have 6 basis functions. Assuming side 3 on 
axis, they are 

N] = (0, s2) 

N2 = (rR3' rs) 

N3 = (tR3' st) 

N4 = (sL 1 , 0) 

Ns = (sL 2 , 0) 

N6 = (-2sL3 , 0). 

(9) 
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The field B is a linear combination of these basis func­
tions. Substituting these fields into (2a) yields a general­
ized eigenvalue problem which can be solved for the ap­
proximate eigenvalues w2 / c2 and eigenvectors B. Careful 
orientation of the vector basis functions is necessary to 
ensure that the tangential component of the field is con­
tinuous across the element boundaries. This and the quasi­
periodic boundary condition are handled when assembling 
the element matrices (the integral (2a) restricted to ne) 
into the global matrices (the integral (2a) over all of n). 

Tests 

Tests on the lowest mode of a pillbox and the second 
lowest mode of a sphere are shown in figure 3. A pill­
box lcm high with a lcm radius has eigenvalue w2 / c2 = 
13.25956212 cm- 2 for the lowest mode. A sphere with ra­
dius of lcm has w2 /c2 = 14.97874667cm-2 for the sec­
ond lowest mode. The results show that YAP can provide 
higher accuracy by over an order of magnitude. The rel­
ative error in the eigenvalue scales as O(h3

.
8

) for YAP, 
O(h2) for URMEL on a pillbox, and O(h) for URMEL on 
a sphere. Inadequate modelling of curved boundaries is 
responsible for the poor scaling observed in URMEL on a 
sphere. 
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Fig. 3 Test on a pillbox (solid line) and a sphere (dashed 
line). 

Careful choice of the basis functions makes this finite 
element formulation preserve the continuum result that all 
unphysical solutions have w = 0, so the spurious solutions 
which plague many field solvers are easily avoided[7]. A 
naive choice for the basis functions often leads to a finite 
element field solver which is unreliable due to the presence 
of spurious modes with w > o. 

X Band Accelerator Structure 

An example of an x-band accelerator structure is 
shown in figure 4. The estimated relative error for the 
calculated frequency for the lowest dipole 7r mode using 
this mesh is 0.0033, and refining the mesh reduces the fre-

quency error to 10 ppm. This is an estimated error of 
150 KHz relative to the lowest dipole 7r mode frequency of 
15 GHz. Measurements on a stack of six identical cells (five 
cells with a shorted half-cell on each end) agree with the 
calculations. For example, the second lowest dipole 0 mode 
frequency was calculated to be 16.764 GHz. Compared 
with the measured frequency of 16.761 GHz, the error is 
3 MHz, or 200 ppm. This is consistent with the 100 ppm 
error estimate for the dimensions of the structure and the 
1 MHz error estimate for the frequency measurement. 

These results demonstrate that YAP can find mode 
frequencies to a high degree of accuracy. In particular, it 
has sufficient accuracy to aid the design of detuned accel­
erator structures. 

Fig. 4 

/ 

(a) (b) 
(a) Lowest dipole 7r mode for an x-band acceler­

ator structure and (b) magnified view of the right 
nose. The arrows represent the field (Bz, Bp) and 
the circles represent the field -ipB¢. The sizes of 
the circles and arrows indicate the magnitude of the 
fields . 
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