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Abstract 

The TM012 rf cavity mode, in a right circular cylinder, has 
been studied as a candidate for the bridge-coupler application 
in the coupled-cavity (CCL) portion of the SSC linac. The 
studies were made with the aid of mode charts, computer 
models (LOOP, DISPER, SUPERFISH, and MAFIA) and 
cavity models. The potential of mode mixing with other 
cavity modes is always a concern when considering untried 
structures. As the length of this type of bridge coupler 
increases, its diameter decreases, implying a larger range in 
the L/R ratio. The frequencies of other cavity modes have a 
strong dependence on the L/R ratio of the structure. In the 
range of bridge coupler lengths, required for the SSC CCL 
linac, mode mixing problems should be easy to avoid. The 
cavity model, built and tested for these studies, was close to 
the worst L/R ratio for the entire SSC application and no 
mode mixing problems were observable. Progress was made 
on understanding the effects introducing a third distinct 
geometry in the midst of a bi-periodic cavity chain and the 
effects of coupling two slightly different biperiodic chains. 
This bridge coupler reduces the effective cell count in the 
cavity chain and increases the mode spacing to the nearest 
modes in long structures. The group velocity is high, the 
vacuum properties are good, the structure is simple, and the 
fabrication costs should be low. 

The TM012 Bridge Coupler 

The TM012 mode, in a right circular cylinder, appears to 
be an excellent choice for the bridge coupler application. 
The group velocity is high, the structure is simple, and the 
fabrication costs should be low. 

The principal quality of a bridge coupler, effecting the 
mode spectra of the coupled structure, is the transit time of 
energy through the bridge coupler, which, in tum, is equal to 
the bridge coupler length divided by the group velocity of the 
cavity mode. As the bridge coupler length is determined by 
other considerations, the principal figure of merit for a 
particular bridge coupler candidate is its group velocity -- the 
higher the better. 

The two lower frequency TM modes were not 
considered because: 1) the TM010 mode has zero group 
velocity, and 2) the TMOll mode has a reversal of field 
polarity from end to end and no magnetic field at its center, 
where such structures are commonly driven (with magnetic 
coupling). Thus, the TM012 mode is the lowest frequency 
TM mode having the desired properties. 
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Bridge Coupler Lengths 

Bridge coupler lengths are normally constrained to be 
odd multiples of the average cell length (~A/2). In non­
relativistic linacs (most proton and ion linacs), where the 
particle velocities increase with energy, every bridge coupler 
has a different length. Strict application of this constraint 
would imply that every bridge coupler would also have a 
different diameter. These differences would keep the cost of 
bridge coupler fabrication from falling to the low that could 
be achieved with more similarity between the individual 
units. 

However, it is not necessary for the bridge couplers to 
have exactly the same length as the inter-tank spacings of the 
accelerator which they bridge. If the bridge couplers were 
10-15% longer than the minimum inter-tank spacing which 
they are designed to serve, relatively few bridge coupler 
designs could serve many different inter-tank spacings. Of 
course, the mating flange locations and the coupling slot 
dimensions would have to be tailored to the required inter­
tank spacing. 

Bridge Coupler Tuning 

An infinitely long circular cylinder will propagate power 
at all frequencies above that of the cut-off mode, TM010 . 
Termination of the cylinder between parallel planes 
introduces discrete modes on the continuous dispersion 
relation of the infinite cylinder, such as the TMOll and 
TM012 modes. These modes still enjoy the power 
propagation properties and the finite group velocity of the 
same modes in the infinite cylinder. 

The introduction of coupling slots at each end of the 
terminated cylinder makes if behave as one period of a 
periodically loaded infinite cylinder, which, in general, will 
have discontinuities (stop-bands) in its dispersion relation. 
Near these stop-bands, the power propagation properties of 
the mode can be seriously impaired and the group velocity 
can go to zero. 

The goal in tuning bi-periodic accelerating structures is 
to tune out these stop-bands so as to restore the power 
propagation properties of a finite group velocity. In this 
context, it is usual to refer to the two different rf cavity 
modes that exist in the bi-periodic structure as the 
"accelerating" mode and the "coupling" mode. The 
accelerating mode is supported by the structure terminations 
while the coupling mode is defeated by the structure 
terminations. Nevertheless, the coupling mode has a great 
influence on the power propagation properties of the 
structure. The tuning goal is achieved when the geometry of 
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the structure is modified so that the frequencies of these two 
modes coincide with the desired operating frequency. 

It is useful to think about these two modes in the ™O 12 
bridge coupler. The coupling mode is identical to the accel­
erating mode. but displaced from it by 'A./4. The accelerating 
mode can be excited in the closed cylinder, while the 
coupling mode cannot. Without perturbations such as the 
coupling slots or special tuners, the frequencies of these two 
modes are identical, thus obviating the need for any special 
tuning to achieve a closed stop-band and good power flow. 

It is easy to imagine that coupling slots will perturb the 
frequencies of the two modes differently, thus opening up a 
stop-band. It is also easy to conceive of tuner geometries 
that will counteract that detuning and close the stop-band. 
For example, a slug tuner on the end-wall of the bridge 
coupler will effect the two modes differently. Correct 
adjustment of the end wall location and the slug tuner 
position should result in a closed stop-band and good power 
propagation properties for this type of bridge coupler at the 
desired operating frequency. 

Important Properties of Long Celis 

The mode spacing, in the vicinity of the operating mode, 
is a significant figure-of-merit for accelerating structures. 
Comparison of two common relations for this mode spacing 
gives some insight into the role of the different features of 
the structure in this important structure property. 

One relation involves a fill time, tf, defined as the time 
required for power to flow from one end of the structure to 
the other -- not to be confused with the Q-related fill time. 
This fill time is made up of two parts, namely, the time of 
transit of power through the cells of the structure and the 
time of transit through the cell coupling apertures. For short 
cells and small coupling apertures, the latter dominates and 
we tend to associate the structure performance solely with the 
coupling geometry and forget the requirement for power 
propagation through the cells. When considering the effect 
of bridge couplers on the performance of a structure, it is 
important to remember both terms. 

Resonance in this structure requires that power flow 
from end to end of this structure and back again in an integral 
number of rf cycles. This leads to a relation for resonant 
frequencies, namely, f=N!2tf. The spacing to the nearest 
modes corresponds to the frequency difference, fif, 
associated with the nearest integers, namely fiN= 1, or 

M=1/2tf· 
The effective group velocity, v g' of the structure is seen 

to be L/tf. Note this group velocity depends on both terms 
effecting the fill time, namely the cell properties and the 
coupling aperture properties. 

The other common relation for the mode spacing of a 
structure involves the number of cells, N, the phase shift per 
cell, <1>, and the slope of the dispersion relation, dwld<1>, in the 
vicinity of the operating mode, where w=2nf. Resonance in 
this structure requires that the accumulated phase shift from 

end to end of the structure and back again be an integral 
multiple, M, of 2n, or 2N<1>=M*2n. The nearest modes differ 
from the operating mode by a fi<1> corresponding to the 
nearest integer to M, namely fiM=l, or fi<1>=1t/N, which, in 
tum yields a frequency difference based on the slope of the 
dispersion relation, namely, M=dwld<1>!2N. Noting that the 
slope of the dispersion relation is commonly interpreted as 
the effective group velocity divided by the cell length, Lc, we 
see that the two relations for the mode spacing yield the same 
result, namely, M=vglLc!2N=l!2tf, where L=N*Lc. 

The purpose of this is to establish that the performance 
of a structure, the mode spacing in the vicinity of the 
operating mode, and the so-called coupling constant of the 
structure is dependent on the properties of the cell as well as 
the properties of the coupling aperture. This subtle point is 
of little consequence when considering simple periodic or bi­
periodic structures. It does, however, take on a significant 
when considering the effect of bridge couplers on the 
performance of bridge-coupled structures. 

In long bridge couplers with low group velocity, the cell 
part of the effect predominates over the coupling part. The 
original LAMPF TMOIO bridge coupler was in this category. 
After recognition of this problem, it was modified to a "post­
coupled" bridge coupler to enhance its group velocity and the 
problem went away. 

In long bridge couplers with high group velocity, the 
coupling part predominates over the cell part of the relation. 
The TMO 12 bridge coupler is in this category.. In spite of .its 
length, it should perform pretty much as a smgle cell WIth 
coupling effects commensurate with the size and shape of the 
coupling apertures. 

Interruption of the Bi-Periodic Chain 

The coupled resonator model for single- and bi-periodic 
chains of coupled resonators 1, with nearest and next nearest 
coupling, pays no attention to the distribution of electric and 
magnetic fields within the cavities. It involves cell properties 
and inter-cell properties. In the n/2 mode (the normal 
accelerating mode), the relation between the excitations of 
adjacent accelerating cells is: 

where the cell excitation, Xn, is defined to be the square root 
of the stored energy in the cell and the coupling constant, k, 
is the principal inter-cell quantity, as suggested by the double 
subscript. 

It should be noted that in this mode, there is stored 
energy in only one type of cavity (the accelerating cells) and 
there is only one inter-cell geometry. That is, kn,n+ 1 must 
equal kn+ 1 n+2 and Xn must equal Xn+2· 

The suindard coupled resonator model is a superb tool 
for studying the properties of these regular cavity chains. 
Most of what we know about resonantly coupled structures 
comes from, or is supported by, this mathematical model. 
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The coupled resonator model suggests that the coupling 
aperture serves to couple the excitations of adjacent cells, 
defined in terms of the square root of the stored energy in the 
cells. Actually, the physics of the coupling aperture knows 
only about the fields in the vicinity of the coupling apertures 
and does not know about the magnitude of the stored energy 
in the cells. This distinction is of little consequence in 
single- and bi-periodic structures, as the relationship of the 
square root of the stored energy in the cell to the fields in the 
vicinity of the coupling aperture is constant for similar cells. 

The introduction of bridge couplers, however, moves us 
out of the strict bi-periodic domain. Here, there is stored 
energy in lli1l different type of cavities (the accelerating cells 
and some of the bridge coupler cells) and there are lli1l 
different inter-cell geometries. 

The equation above shows that, in the 1t/2 mode, the 
coupling constant is inversely proportional to the square root 
of the energy in the excited cell. Hence, we conclude that 
the coupling constants associated with large bridge couplers 
with large stored energies will be small. However, this 
coupling constant should not be construed as a valid measure 
of the "effective" performance of the coupling aperture. 

Determination of the "effective" performance of the 
coupling apertures between two adjacent excited cells of 
different cell and inter-cell geometries prompts the need for 
additional information on the distribution of the stored 
energies and fields within the cells. Let us define a new cell 
property, Sn' to describe the relationship of the stored energy 
in the cell, Un' to the fields, En or Hn, in the vicinity or the 
coupling aperture: 

This quantity is well defined for a given cell geometry 
and coupling aperture location, is independent of excitation, 
and can be evaluated from SUPERFISH or MAFIA output. 

Let "a", "c", and "b" denote accelerating, coupling and 
bridge cells. The "effective" coupling constants, reflecting 
the power flow capabilities of the coupling aperture in the 
1t/2 mode, satisfies the following equation: 

The "effective" coupling constants for bridge cells differ 
from the standard coupling constants for bridge cells by the 
square root of the ratio of the S values for the bridge and 
accelerating cells: 

Note that this distinction is of little consequence when the 
bridge cell geometry is similar to that of the accelerating cell, 
i.e. when Sb=Sa' 

When the bridge cell geometry is distinctly larger that 
the accelerating cell geometry, suggesting a larger Ub and a 

smaller kbc' the "effective" coupling constant, as defined 
here, is independent of UbfUa. 

A voidance of Other Cavity Modes 

The resonant frequencies, f, of the rf cavity modes in a 
right circular cylinder of length, L, and diameter, D, are : 

where c is the velocity of light, Xlm is the mth root of Il'(X) = 
o for TE modes and of II (x) = 0 for TM modes, and n is the 
number of half-periods in the axial field variation. Solutions 
of this equation yield straight lines in the (fD)2 versus (D/L)2 
space. Graphs of this are called mode charts. 

The bridge couplers lengths for the SSC Coupled Cavity 
Linac (CCL), which will operate at 1282.851 MHz, range 
from 0.30 to 0.48 m. The diameters of cylindrical cavities of 
those lengths, having their TM012 mode at that frequency, 
range from 0.285 to 0.205 m respectively. Inspection of the 
mode chart shows that the only modes of a right circular 
cylinder that could possibly cross the TM012 mode, in this 
range of parameters, are the TM110' TE211' and TE113 
modes. Table I gives the Land D combinations, yielding a 
TM012 frequency at 1282.851 MHz, and the corresponding 
frequencies for the other 3 modes of interest. 

Table I TM012 Bridge Coupler Dimensions 
and Other Mode Frequencies. 

L D TMll0 TE211 TE\l3 
(mm) (mm) (MHz) (MHz) (MHz) 

300 285 1283 1138 1638 
320 262 1396 1207 1557 
340 246 1487 1264 1503 
360 235 1556 1308 1456 
380 227 1611 1343 1414 
400 220 1662 1377 1379 
420 215 1701 1402 1347 
440 211 1733 1423 1318 
460 208 1758 1438 1292 
480 205 1784 1456 1270 
500 202 1810 1474 1251 

The cross-over for the TM 110 mode occurs at a bridge 
coupler length of 0.30 m. It would be possible to avoid a 
conflict with this mode by restricting the minimum bridge 
coupler length to 0.32 m. The cross-overs for the TE211 and 
TE113 modes occur at 0.35 and 0.47 m respectively. It 
would be possible to avoid conflicts with these modes by 
avoiding these lengths by a margin of about one centimeter. 

I "The Coupled Resonator Model for Standing Wave Accelerator Tanks" 
D.E. Nagle, E.A. Knapp, and B.C. Knapp, Rev. Sci. Instr. 38,11 (1967). 
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