
CEBAF CONTROL SYSTEM 

R. Bork, C. Grubb, G. Lahti, E. Navarro, J. Sage 
Continuous Electron Beam Accelerator Facility* 

12000 Jefferson Avenue, Newport News, Virginia 23606 

T. Moore 
Lawrence Livermore National Laboratory 

P.O. Box 808 
Livermore, CA 94550 

Abstract 

A logic-based computer control system is in development 
at CEBAF. This Unix/C language software package, running 
on a distributed, hierarchical system of workstation and su
pervisory minicomputers, interfaces to hardware via CAMAC. 
Software aspects to be covered are ladder logic, interactive 
database generation, networking, and graphic user interfaces. 

Introduction 

A logic-based application software package, Thaumaturgic 
Automated Control Logic (TACL), is presently in development 
at CEBAF for the control of machine operations. TACL is a 
tool for building custom control software for a hierarchical, dis
tributed process control system. It is premised on a ladder-logic 
configuration, with a series of editors for relational database 
generation. Once developed, this database is used by run-time 
programs which perform the actual control of the system as 
specified in the database. 

TACL is designed to operate with Hewlett-Packard (HP) 
series 300, 500, and 800 computers and with Computer Auto
mated Measurement and Control (CAMAC) equipment. At 
this time, TACL uses a control system architecture of two 
hierarchical levels: an upper level known as the Supervisory 
Control Level (SCL), and a lower level or Local Control Level 
(LCL). The system may be configured with a maximum of ten 
SCL computers, each with a subsystem of at most 20 LCL com
puters. Each LCL computer may have up to 15 CAMAC crates 
attached. 

Overview 

TACL allows a user to develop a control software sys
tem via a menu-driven, graphical interface. The package offers 
menu selection of pre-defined data I/O functions, internal con
trol algorithms, and run-time display options. In combining 
these selected functions, the user builds up a complete, flexi
ble, modifiable control database. Scientists and engineers can 
quickly develop control system applications and modify their 
control databases or run-time displays. 

A block diagram of the software components of TACL is 
shown in figure 1. Two components, the logic and display edi
tors, are used off-line to build the required databases. During 
run-time, other programs use these databases to implement the 
specified control algorithms, handle data I/O, and manager the 
user interface. 

Off-Line Editors 

Logic Editor 

The logic editor, used to develop the primary database for 
operation of the control system, consists of two sections. One 
section defines all I/O interfaces to the computer. The second 

section is used to develop the internal data manipulations and 
control algorithms. 

The interface section development screen is a menu-driven 
development page used to define CAMAC and LAN interfaces 
for the database. Among the capabilities of this section are: 

1) Adding/deleting computers. In a distributed process 
scheme, computers may be added or deleted from the data
base with necessary addresses and locations defined. 

2) Adding/deleting CAMAC crates. 

3) Adding/deleting/moving CAMAC modules. 

4) Defining I/O points. User-specified names are assigned to 
I/O channels to/from CAMAC modules and LAN. 

5) Maintaining the CAMAC module library. The library func
tion is used to add data about new types of CAMAC mod
ules as they are introduced into the system. 

6) Saving/loading files. Stores or retrieves system files. 

7) Producing documentation. Produces hard-copy documen
tation for specific user application. 

Once this portion of the editor has been used to define the 
interfaces to the system, the actual control algorithms can be 
built. 

The logic development page permits the user to define data 
flow and data manipulation in a schematic fashion through the 
use of function symbols. Parts are chosen from a menu listing 
and then placed on a screen grid, in much the same manner as 
drawing an electronic circuit on a CAD computer. Each part 
is a predefined, functional software object, which is placed into 
the logic ladder represented by the grid. 

Specific functions/objects may be chosen from the follow
ing categories: 

1) Input from and output to CAMAC, data storage, oper
ator interface, and LAN. The first portion of the editor, 
described previously, was used to define interfaces to move 
data into and out of the computer. The objects defined 
here move data into and out of the logic analysis portion 
of the run-time program and perform the necessary con
version of raw data to the desired engineering units. 

2) Data ties. These provide for data flow from one section of 
logic to another, as direct connections or feedback loops. 

3) PID. This function is a proportional-integral-differential 
control algorithm, common in process control. It allows 
for the setting of the PID constants, control conversions, 
sample time, high/low rate and value, loop setpoint, and 
various other items particular to PIDs. 

* This work was supported by the U.S. Department of En
ergy under contract DE-AC05-84ER40150. 

Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

WE3-41 415



LOGIC 
EDITOR 

DISPLAY 
EDITOR 

M 
E 
M 

DISC I/o 

M 
E 
M 

LOGIC 
ANALYSIS 

Figure 1 Instrumentation and Control Software System Ar
chitecture 

4) Normally open or closed contacts and switches. The data 
used to operate these software switches can come from 
external or internal devices. 

5) Math Functions. Presently available are adders, subtrac
tors, multipliers, dividers, as well as exponential, log, 
power, root, trigonometric, and polynomial functions. 

6) Timers. Variable time settings in I-second intervals at pre
sent. 

This is a quick list of the functions presently available. 
Other object functions, such as look-up tables for magnet con
trol, are in development. Since the source code for this editor 
is modular, new function objects can be developed and tested 
as a small unit outside of the editor program and then placed 
into the editor. 

Display Editor 

The display editor is used to create custom, graphic, run
time displays for 19" high-resolution, bit-mapped monitors. 
This editor, like the logic editor, is menu-driven. The user 
chooses predefined symbols (or creates symbols which then ap
pear in a menu), draws lines, and makes labels to build a run
time display and user interface. 

Menu-selectable items include: 

1) Data read/write boxes. Read boxes show the operator a 
single data point. Write boxes provide for data entry via 
keyboard or knob box. 

2) Status symbols. User-created symbols with or without an 
associated data box. These symbols do not change in run
time although the data will change to reflect conditions. 

3) Dynamic symbols. User-created with or without a data 
box. These are actually three symbols in one (tri-state). 
The symbol which appears on the display at a given time 
depends on the data at that time. For example, an open 
valve symbol may change to a closed valve symbol on re
ceipt of a relay closing signal from CAMAC. 

4) Labels. A means of putting text on the screen. 

5) Lines. Color and width selectable. Normally used in flow 
diagrams, connections, or to generally enhance and high
light the display. 

6) Predefined symbol macros. At present there are two, both 
used for the display and operation of PID loops. 

In creating a symbol, the user chooses and assembles gra
phic primitives (circles, rectangles, lines, text), selecting color, 
size and placement by buttoning a mouse. The completed sym
bols are stored and may be retrieved later for this logic database 
or for any other database. 

The association of a display symbol or display data box 
with actual run-time data is made when a symbol, read/write 
box or PID is placed on the screen in an editor session. 

Provision has been made for deleting, moving, and exam
ining symbol parameters if display revisions are required. 

Run-time Programs 

After the system and display databases have been gener
ated using the editors, they are ready to be used by various 
run-time programs. Identical logic analysis, LAN control, and 
data logger programs run on all machines in the system. The 
operator interface program version is chosen to support the 
graphic capabilities of the particular SCL or LCL computer. 

Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

416 WE3-41



Logic Analysis Program 

This program is the core of the run-time system. Its func
tions are: (1) handling all I/O to CAMAC, to data storage 
units, to the LAN control, and to operator interface programs, 
and (2) performing the data manipulation and control algo
rithms. 

This program develops a threaded code from the database 
information which then functions to: 

1) Read data in from CAMAC/LAN/operator. 

2) Perform the control logic. 

3) Write data out to CAMAC/LAN/operator. 

4) Perform fault checking and correction. CAMAC or remote 
computer faults are reported to the operator, and when 
possible, automatic corrective action is taken. 

Lanmaster 

The LAN control program handles all data transmissions 
to/from other computers on the subsystem network and checks 
the integrity of the network for automatic fault handling and 
notification to the operator. It uses level-two access into the 
IEEE 802.3 hardware. 

Run-time Display 

This is the operator interface program which manages the 
display monitors for operator interaction at each computer. 
The previously created display files are continuously updated 
with new data coming from the logic analysis program via 
shared memory. Operator input is acknowledged locally on the 
display and transmitted to the logic program, again via shared 
memory. Input from the operator may be via knobs, keyboard, 
trackball, or mouse. 

On the HP500 computers, a maximum of four different dis
plays are kept current on two monitors. This is done by dividing 

the eight graphics planes of each monitor into two sets of four 
as foreground and background buffers. These four displays are 
held in frame buffers for virtually instantaneous page chang
ing. In addition, other displays can be menu-selected during 
run-time to replace any of the original displays. 

The right-hand portion of each display is reserved for sys
tem use. It shows the status of computers and CAMAC equip
ment in the system, and provides menus for display changes. 

The Graphs program provides for real-time and off-line 
graphing of data generated by the run-time processes. It per
mits a maximum of eight parameters to be graphed at a time 
on a single display in eight colors. The eight parameter names 
and variable data scales appear to the left with their data plots 
in the graphical area. 

Manager and Master 

The Manager program is the first program run on any 
computer. It activates a menu on the console which is used to 
load and activate the other application processes. 

The Master program is a background process which allows 
two graphics displays to operate with a single mouse, knob 
box, and keyboard. It operates in much the same fashion as a 
window manager, which each display appearing as a separate 

window. Master tracks the current mouse/knob position and 
traps input requests and passes them to the appropriate pro
cess. It also presents keyboard requests to the process running 
the display that the mouse cursor presently appears on. 

Present Status 

TACL is presently operational at CEBAF on the Cryogen
ics Test Facility, a 2-K liquid helium plant, and the injector test 
stand. In addition, this package has been adopted and is be
ing used to control the Multi-user Tandem Facility at Lawrence 
Livermore National Laboratory (LLNL) and was due for instal
lation to operate the TANDEM accelerator at Yale University. 

These systems all employ what is known as Version II of 
TACL. Version III, currently under development and due for 
release in the spring of 1989, will provide various extensions, 
including: 

1) Logic and display software IC's for automated beam trans
port system control including beam modeling interfacing 
capabilities. 

2) Additional interface capabilities for custom-written user 
software. 

3) Additional graphics display capabilities and enhancements. 

Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

WE3-41 417


