Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

MAPPING THE FRINGE FIELDS OF MULTIPOLE MAGNETS*

E. A. Wadlinger
MS-H808, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

A good method for mapping multipole magnets (suggested by K . Halbach) is to measure the magnetic field on the surface of a constant radius cylinder centered on the magnet axis. This paper presents one approach to this mapping concept using a magnetic field description that identically satisfies Maxwell's equations. The field map is used to determine the magnetic scalar potential function written in a form that reduces to a standard multipole expansion for an axially independent field. This scalar potential function is used in particle tracking codes. An example and a brief error analysis are included.

Mapping Method

Figure 1 illustrates the mapping method using sensing coils (Hall probe mapping is conceptually the same as the coil method). Coils C_{r} and C_{θ}, which measure changes in the radial and azimuthal magnetic flux through the coils during angular coil rotation, are stepped axially through the magnet including the fringe-field region. At each axial position, the cylinder holding the sensing coils is rotated and the changes in magnetic flux versus angle are measured and Fourier analyzed. The Fourier amplitudes are used to determine the magnetic scalar potential function (see below). The axial length δz_{C} of the sensing coils should be small compared to the magnet apcrture in order to measure the magnet fringe field with maximum experimental sensitivity and to simplify the analysis.

Fig. 1. Schematic of magnet-mapping coil geometry.

[^0]Signals from C_{r} and C_{θ} are proportional to the change in the total magnetic flux $(\partial \Phi / \partial \theta)$ through the coils during rotation. The magnetic flux measurements, at axial coil position $z_{C}=z_{i}$ ($i=1, \ldots$, number of measurements), are Fourier analyzed to give the amplitucles A and B at each location where
$\left.\frac{\partial \Phi_{C_{r}}}{\partial \theta_{C}}\right|_{z_{C}=z_{i}}=\sum_{m}\left[A_{r_{m}}\left(z_{i}\right) \sin \left(m \theta_{C}\right)+B_{r_{m}}\left(z_{i}\right) \cos \left(m \theta_{C}\right)\right]$,
$\left.\frac{\partial \Phi_{C_{\theta}}}{\partial \theta_{C}}\right|_{z_{C}=z_{i}}=\sum_{m}\left[A_{\theta_{m}}\left(z_{i}\right) \sin \left(m \theta_{C}\right)+B_{\theta_{m}}\left(z_{i}\right) \cos \left(m \theta_{C}\right)\right]$,
(m is an integer denoting the harmonic number; subscript r refers to the radial flux measurement; subscript θ refcrs to the azimuthal measurement; and θ_{C} is the coil angle). If the coils contain multiple loops, the measured values must be divided by the number of loops.

Analysis Equations

The magnetic ficld in a source-free region can be calculated from a scalar (V) potential function where, in cylindrical coorclinates,

$$
\begin{equation*}
\vec{B}=-\nabla V=-\left(\hat{a}_{r} \partial_{r}+\hat{a}_{\theta} \frac{\partial_{\theta}}{r}+\hat{k} \partial_{z}\right) V \tag{3}
\end{equation*}
$$

(∂_{r} denotes the partial derivative with respect to r, ctc., and the \hat{a} 's are unit vectors in cylindrical coorclinates). Because $\nabla \cdot \vec{B}=0$ in a source-free region, the scalar potential satisfies the Laplace equation and can be written as ${ }^{1}$

$$
\begin{align*}
V(r, \theta, z) & =\sum_{m}\left(\frac{r}{r_{a}}\right)^{m} \sum_{n=0}^{\infty} \frac{m!\left(-r^{2} \partial_{\underline{2}}^{2}\right)^{n}}{2^{2 n} n!(n+m)!} \\
& \times\left[\cos (m \theta) F_{m}(z)+\sin (m \theta) G_{m}(z)\right] \tag{4}
\end{align*}
$$

where r_{a} is the magnet aperture radius. The scalar potential in Eq. (4), which consists of a power series expansion in r for each harmonic number m, is fully determined by the arbitrary nonsingular functions $F_{m}(z)$ and $G_{m}(z)$. These nonsingular functions satisfy the boundary conditions that all the derivatives of F and G vanish at $z \rightarrow \pm \infty$. (Periodic boundary conditions can also be imposed as in the example given later.) In $S I$ units, V has the dimensions of tesla-meters; therefore, F_{m} and G_{m} also have the units of tesla-meters. [Note that $\left(r^{2} \partial_{z}^{2}\right)$ is dimensionless.]

Equations (3) and (4) are combined to obtain the magnctic field. We ignore B_{z} and concentrate on B_{r} and B_{θ}. The total flux Φ through the coils C_{r} and C_{θ}, determined from the area integrals, is

$$
\begin{gather*}
\Phi_{C_{r}}=\left.\int_{\theta_{C}-\delta \theta_{C}}^{\theta_{C}+\delta \theta_{C}} r_{C} d \theta \int_{z_{C}}^{z_{C}+\delta z_{C}} B_{r} d z\right|_{r=r_{C}} \tag{5}\\
\Phi_{C_{\theta}}=\left.\int_{r_{C}-\delta r_{C}}^{r_{C}} d r \int_{z_{C}}^{z_{C}+\delta z_{C}} B_{\theta} d z\right|_{\theta=\theta_{C}} \tag{6}
\end{gather*}
$$

Measurements of $\partial \Phi / \partial \theta$ are made at various z positions (the highest density of measurements are made in the magnct fringe-field region where F and G are rapidly varying). From Eqs. (5) to (6) and rearranging, we have

$$
\begin{aligned}
\frac{\partial \Phi_{C_{r}}}{\partial \theta_{C}}= & \sum_{m} \sum_{n=0}^{\infty} \Lambda_{r}(m, n) \int_{z_{C}}^{z_{C}+\delta z_{C}} \\
& {\left[\sin \left(m \theta_{C}\right) r_{C}^{2 n} \partial_{z}^{2 n} F_{m}(z)-\cos \left(m \theta_{C}\right) r_{C}^{2 n} \partial_{z}^{2 n} G_{m}(z)\right] d z,(7) } \\
\frac{\partial \Phi_{C}}{\partial \theta_{C}}= & \sum_{m} \sum_{n=0}^{\infty} \Lambda_{\theta}(m, n) \int_{z_{C}}^{z_{C}+\delta z_{C}} \\
& {\left[\cos \left(m \theta_{C}\right) r_{C}^{2 n} \partial_{z}^{2 n} F_{m}(z)+\sin \left(m \theta_{C}\right) r_{C}^{2 n} \partial_{z}^{2 n} G_{m}(z)\right] d z,(8) }
\end{aligned}
$$

where

$$
\begin{align*}
& K_{r}(m, n)=\frac{\sin \left(m \delta \theta_{C}\right)(-1)^{n}(m+2 n) m!}{2^{2 n-1} n!(n+m)!} \frac{r_{C}^{m}}{r_{a}^{m}} \tag{9}\\
& K_{\theta}(m, n)=\frac{(-1)^{n} m^{2} m!\left[1-\left(\frac{r_{C}-\delta r_{C}}{r_{C}}\right)^{m+2 n}\right]}{2^{2 n}(m+2 n) n!(n+m)!} \frac{r_{C}^{m}}{r_{a}^{m}} \tag{10}
\end{align*}
$$

are independent of z and dimensionless. (The z partial derivatives can be written as total derivatives inside the above integrals. The partial derivative symbol is retained to enhance readability.)

We use a Taylor series expansion

$$
\begin{equation*}
F\left(z_{0}+\delta z_{C}\right)=\sum_{j=0}^{\infty} \frac{1}{j!}\left[\partial_{z}^{j} F(z)\right]_{z=z_{0}}\left(\delta z_{C}\right)^{j} \tag{11}
\end{equation*}
$$

to determine the integrals in Eqs. (7) and (8). Using the notation $F_{m}^{(n)}(z)=\partial_{z}^{n} F_{m}(z)$, then

$$
\begin{align*}
\int_{z_{C}}^{z_{C}+\delta z_{C}} \partial_{z}^{2 n} F_{m}(z) d z & =\sum_{j=1}^{\infty} \frac{F_{m}^{(2 n+j-1)}\left(z_{C}\right)\left(\delta z_{C}\right)^{j}}{j!} \\
& =F_{m}^{(2 n)}\left(z_{C}\right) \delta z_{C}+\ldots \tag{12}
\end{align*}
$$

Substitute Eq. (12) into Eqs. (7) and (8), then compare with Eqs. (1) and (2) to define
$A_{r_{m}}^{a}\left(z_{C}\right)=+\sum_{n=0}^{\infty} K_{r}(m, n) r_{C}^{2 n} \sum_{j=1}^{\infty} \frac{\partial_{z_{C}}^{2 n+j-1} F_{m}\left(z_{C}\right)\left(\delta z_{C}\right)^{j}}{j!}$,
$B_{r_{m}}^{a}\left(z_{C}\right)=-\sum_{n=0}^{\infty} I_{r}^{*}(m, n) r_{C}^{2 \prime \prime} \sum_{j=1}^{\infty} \frac{\partial_{z=1}^{2 n+j-1} G_{m}\left(z_{C}\right)\left(\delta z_{C}\right)^{j}}{j!}$,
$A_{\theta_{m}}^{a}\left(z_{C}\right)=+\sum_{n=0}^{\infty} K_{\theta}(m, n) r_{C}^{2 n} \sum_{j=1}^{\infty} \frac{\partial_{z r}^{2 n+j-1} G_{m}\left(z_{C}\right)\left(\delta z_{C}\right)^{j}}{j!}$,
$B_{\theta_{m 2}}^{a}\left(z_{C}\right)=+\sum_{n=0}^{\infty} I_{\theta}(m, n) r_{C}^{2 \prime \prime} \sum_{j=1}^{\infty} \frac{\partial_{z_{r}}^{2 n+j-1} F_{m}\left(z_{C}\right)\left(\delta z_{C}\right)^{j}}{j!}$,
which have the dimensions of Webers (tesla-meters ${ }^{2}$). The superscripts a indicate that the A^{a} and B^{a} terms refer to the analytic expressions, Eqs. (13) to (16). These A and B terms should agree with those in Eqs. (1) and (2) to within the experimental measurement accuracy. The measured A and B coefficients in Eqs. (1) and (2) are used to determine the F and G functions in Eqs. (13) to (16) (see below).

Equations (13) to (16) contain the full power series expansion in terms of the pickup loop width $\delta z C$. Usually, only the first order term in $\delta \approx C$ of the power series expansion is required.

Tables I and II are given to provide some indication as to how rapiclly the power series, in n, in Eqs. (7), (8), and (13) to (16) converge. We assume, in these tables, that $r_{C}=\delta r_{C}=r_{a}$ and $\sin \left(m \delta \theta_{C}\right)=1$. (The series will converge more rapidly for

TABLE I. FUNCTION $K_{r}(m, n)$.

m 1 n	0	1	2	3	4	5	6
1	$2.0 \mathrm{E}+00$	$-7.5 \mathrm{E}-01$	$5.2 \mathrm{E}-02$	$-1.5 \mathrm{E}-03$	$2.4 \mathrm{E}-05$	$-2.5 \mathrm{E}-07$	$1.7 \mathrm{E}-09$
2	$4.0 \mathrm{E}+00$	$-6.7 \mathrm{E}-01$	$3.1 \mathrm{E}-02$	$-6.9 \mathrm{E}-04$	$9.0 \mathrm{E}-06$	$-7.8 \mathrm{E}-08$	$4.7 \mathrm{E}-10$
3	$6.0 \mathrm{E}+00$	$-6.3 \mathrm{E}-01$	$2.2 \mathrm{E}-02$	$-3.9 \mathrm{E}-04$	$4.3 \mathrm{E}-06$	$-3.1 \mathrm{E}-08$	$1.7 \mathrm{E}-10$
4	$8.0 \mathrm{E}+00$	$-6.0 \mathrm{E}-01$	$1.7 \mathrm{E}-02$	$-2.5 \mathrm{E}-04$	$2.3 \mathrm{E}-06$	$-1.5 \mathrm{E}-08$	$7.2 \mathrm{E}-11$
5	$1.0 \mathrm{E}+01$	$-5.8 \mathrm{E}-01$	$1.3 \mathrm{E}-02$	$-1.7 \mathrm{E}-04$	$1.4 \mathrm{E}-06$	$-8.1 \mathrm{E}-09$	$3.5 \mathrm{E}-11$

TABLE II. FUNCTION $K_{\theta}(m, n)$.

m			n					
	0	1	2	3	4	5	6	
1	$1.0 \mathrm{E}+00$	$-4.2 \mathrm{E}-02$	$1.0 \mathrm{E}-03$	$-1.6 \mathrm{E}-05$	$1.5 \mathrm{E}-07$	$-1.0 \mathrm{E}-09$	$5.2 \mathrm{E}-12$	
2	$2.0 \mathrm{E}+00$	$-8.3 \mathrm{E}-02$	$1.7 \mathrm{E}-03$	$-2.2 \mathrm{E}-05$	$1.8 \mathrm{E}-07$	$-1.1 \mathrm{E}-09$	$4.8 \mathrm{E}-12$	
3	$3.0 \mathrm{E}+00$	$-1.1 \mathrm{E}-01$	$2.0 \mathrm{E}-03$	$-2.2 \mathrm{E}-05$	$1.6 \mathrm{E}-07$	$-8.4 \mathrm{E}-10$	$3.4 \mathrm{E}-12$	
4	$4.0 \mathrm{E}+00$	$-1.3 \mathrm{E}-01$	$2.1 \mathrm{E}-03$	$-2.0 \mathrm{E}-05$	$1.3 \mathrm{E}-07$	$-6.2 \mathrm{E}-10$	$2.2 \mathrm{E}-12$	
5	$5.0 \mathrm{E}+00$	$-1.5 \mathrm{E}-01$	$2.1 \mathrm{E}-03$	$-1.8 \mathrm{E}-05$	$1.0 \mathrm{E}-07$	$-4.5 \mathrm{E}-10$	$1.5 \mathrm{E}-12$	

$r_{C}<r_{a}$.) Table I tabulates $K_{r}(m, n)$ and Table II tabulates $K_{\theta}(m, n)$.

Functions F and G are generally smooth and well behaved with derivatives that rapidly become small with increasing order. Tables I and II indicate that the power series expansions (in n) in Eqs. (13) to (16) can be terminated at low values for n.

Fitting Procedure

We use the magnetic ficld measurements, in the form of Eqs. (1) and (2), and Eqs. (13) to (10) to determine the F_{m} and G_{m} functions; F_{m} and G_{m} can be any function of z that is nonsingular and satisfies the appropriate boundary conditions. (In some cases, analytic expressions exist ${ }^{1,2}$ for F and G.) A series expansion using "model" functions can be made for F and G. Then, Eqs. (13) to (16) together with the magnet map will determine the expansion coefficients. Once F and G are determined, we have an analytic expression, Eq. (4), for the scalar potential of a magnetic field that satisfies Maxwell's equations.

We expand the functions F and G in a series of known functions (f, g) and write

$$
\begin{equation*}
F_{m}(z)=\sum_{j} a_{m} f_{j}(m ; z), \quad G_{m}(z)=\sum_{j} b_{m_{j}} g_{j}(m ; z) ; \tag{17}
\end{equation*}
$$

these functions might depend on the harmonic number m. Functions f and g are chosen to ensure rapid scries convergence in Eqs. (17) and to minimize the number of z derivative terms required in Eqs. (13) to (16). Combining Eqs. (13) to (17) and fitting (generally using a least-squares minimization method) the resulting equations to the mapping data, reduced to the form in Eqg. (1) and (2), determine the expansion coefficients $a_{m_{j}}$ and $b_{m_{j}}$.

Example

We use a Fourier sine and cosine series for the expansion functions in Eqs. (17) and assume periodic boundary conditions. Let L be the total length of a magnet plus its significant fringe field region. Equations (17) become

$$
\begin{align*}
& F_{m}(z)=a_{m_{0}}+\sum_{j=1}\left[a_{m_{j}} \cos (2 \pi j z / L)+b_{m_{j}} \sin (2 \pi j z / L)\right], \tag{18}\\
& G_{m}(z)=c_{0}+\sum_{j=1}\left[c_{m_{j}} \cos (2 \pi j z / L)+d_{m_{j}} \sin (2 \pi j z / L)\right], \tag{19}
\end{align*}
$$

where $-L \leq z \leq L$. Substituting Eqs. (18) and (19) into Eqs. (13) to (16) and keeping only the first order term in δz_{C} gives

$$
\begin{align*}
A_{r_{m}}^{a}\left(z_{C}\right) & \simeq a_{m n_{0}} K_{r}(m, 0)+\sum_{n=0}^{\infty} K_{r}(m, n) \delta z_{C} \sum_{j=1}(-1)^{n}\left(\frac{2 \pi j r_{C}}{L}\right)^{2 n} \\
& \times\left[a_{m_{j}} \cos \left(2 \pi j z_{C} / L\right)+b_{m_{j}} \sin \left(2 \pi j z_{C} / L\right)\right] \tag{20}
\end{align*}
$$

etc. Because of the $\left(2 \pi j r_{C} / L\right)^{2 n}$ coefficients in Eq. (20), the higher-frequency Fourier components require more terms in the series (sum on n) in Eq. (20) than the lower frequency components.

Equations (1), (2), (20), etc., determine the expansion coefficients ($a_{m_{j}}, b_{m_{j}}, c_{m_{j}}, d_{m_{j}}$). One method for obtaining the expansion coefficients is to use a least-squares minimization technique. Define

$$
\begin{equation*}
I_{m}=\sum_{i=1}^{M}\left[A_{r_{m}}\left(z_{C}=z_{i}\right)-A_{r_{m}}^{a}\left(z_{C}=z_{i}\right)\right]^{2}, \tag{21}
\end{equation*}
$$

etc., where M denotes the number of measurement values. The function I_{m} is minimized with respect to the coefficients ($a_{m_{j}}$, $b_{m_{j}}, c_{m_{j}}, d_{m_{j}}$). The resulting set of linear equations is solved for the coefficients. Given the expansion coefficients, the magnetic scalar potential is calculated from Eqs. (3), (4), (18), and (19).

Measurement Coil Positioning

Consider the effect on a magnetic field map where the mapping cylinder center is offset in a single-harmonic multipole magnet. We ignore the fringe-field region and determine the offset map where the magnetic field is constant in z. Equation (4) in a uniform-field region with a single multipole can be written as

$$
\begin{equation*}
V_{m}=V_{0}\left(\frac{r}{r_{a}}\right)^{m} \cos \left(m \theta+\theta_{m}\right) \tag{22}
\end{equation*}
$$

where V_{0} and θ_{m} are constants. Assume that the center of the mapping cylinder is displaced by the distance r_{0} and angle θ_{0} from the magnet center. Then,

$$
\begin{equation*}
\vec{r}=\vec{r}_{0}+\vec{r}_{C}, \tag{23}
\end{equation*}
$$

where the subscript C denotes the mapping cylinder coordinates. Sine and cosine functions are written as exponentials and the potential function is expanded using the binomial theorem to obtain the potential function in the offset coordinate system. From Eq. (22) we oldain

$$
\begin{align*}
\frac{V_{m}}{V_{0}} & =\left(\frac{r}{r_{a}}\right)^{m} \cos \left(m \theta+\theta_{m}\right) \\
& =\frac{1}{r_{a}^{m}} \sum_{n=0}^{m} \frac{m!r_{0}^{n} r_{C}^{m-n}}{n!(m-n)!} \cos \left\{n \theta_{0}+(m-n) \theta_{C}+\theta_{m}\right] \tag{24}\\
& =\frac{1}{r_{a}^{m}}\left[r_{C}^{m} \cos \left(m \theta_{C}+\theta_{m}\right)+\ldots\right. \\
& \left.+r_{C}\left(m r_{0}^{m-1}\right) \cos \left\{\theta_{C}+\left[(m-1) \theta_{0}+\theta_{m}\right]\right\}+\text { const. }\right] . \tag{25}
\end{align*}
$$

Equation (24) is the general form of the magnetic scalar potential for a displaced mapper centroid. Equation (25) lists only the dipole and $m^{t h}$ harmonic terms. The mapper measurement gives

$$
\begin{equation*}
V=A_{m} \cos \left(m \theta_{C}+\theta_{m z}\right)+\ldots+A_{1} \cos \left(\theta_{C}+\theta_{1}\right) \tag{26}
\end{equation*}
$$

where A_{m} and A_{1} are the m-harmonic and dipole amplitudes, respectively. Equation (25) shows that the ratio of the dipole to the $2 m$-pole harmonic strengths is $m r_{0}^{m-1} / r_{C}^{m-1}$, from which we can calculate r_{0}. The dipole phase angle $\theta_{1}=(m-1) \theta_{0}+\theta_{m}$ and, therefore,

$$
\begin{align*}
& r_{0}=\left(\frac{A_{1}}{m A_{m}}\right)^{1 /(m-1)} r_{C} \tag{27}\\
& \theta_{0}=\frac{\theta_{1}-\theta_{m}}{m-1} \tag{28}
\end{align*}
$$

The above analysis is accurate when there is a single dominant multipole in a magnet. The effective center (zero dipole moment) of a compound magnet, containing several different multipole windings (quadrupole + octupole, etc.), will generally move as the relative multipole excitations change because of centroid misalignments. Therefore, the separate multipole components in a compound magnet should be mapped individually.

The analysis indicates that the magnet mapping cylinder does not have to be precision aligned with the magnet center axis. The effect of a mapper center-line offset and constant tilt can be unfolded from the map clata.

Further error analysis can be considered once the f and g expansion functions are chosen, the measurement tolerances are determined, and the method for fitting the expansion functions to the data is decided. Bean dynamics requirements will determine the needed accuracy of the magnetic fields and the error analysis effort.

Summary

We have analyzed a magnet mapping scheme, suggested by Halbach ${ }^{3}$, using a rotatable constant radius cylinder that is centered and moves on the magnet axis. The magnet map is Fourier analyzed and presented in Eqs. (1) and (2). Equations (13) to (16) are fitted to the map clata to detemine the functions F and G [in the form of Eqs. (17)], which, when combined with Eq. (4), give the magnetic scalar potential. Equation (3) then gives the magnetic field.

An error analysis was inclucled to determine the effect of an offset mapper center line from the magnet axis in the nonfringefield region of a magnet. A straightforward (though perhaps tedious) extension of the error analysis can be made in the fringefield region.

References

1. E. A. Wadlinger, "Fringe Fields of Current-Dominated Multipole Magnets," these proceedings.
2. K. Halbach, "Physical and Optical Properties of Rare Earth Cobalt Magnets," Nuclear Instrimn. and Methods 187 (1981) 100-117.
3. K. Halbach, Lawrence Berkeley Laboratory, private communication.

[^0]: * Work supported and fumed by the US Department of Defense, Amy Strategic Defense Command, under the atspices of the US Department of Energy.

