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Abstract

We determine analytic functions that describe the fringe
field region of Lambertson, or cosine-wound, magnets. In partic-
ular, we are interested in determining the aberrations, up to fifth
order, of a beam transiting our large-bore current-dominated
quadrupoles. We determine the scalar potential from the vector
potential calculated first for a single current loop and then for
a 2N symmetric current loop multipole magnet.

Introduction

Figure 1 shows the geometry used for calculating the mag-
netic potential functions (dipole geometry is indicated in the
figure). The magnet coils are placed on a constant radius (rq)
cylinder centered at the coordinate origin, with the z axis as the
rotation axis and with one current loop centered about 8 = 0. (If
the magnet has layered coils with different rg, add the separate
potential functions for each layer.) A field point is described by
the coordinates (r¢, 8¢, zf) and a source point by (ro, 85, zs). The
surface current densities J, which provide the magnetic field, are
assumed to result from 6-directional and z-directional current-
carrying zero-radius wires.
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Fig. 1. Magnet coil loop orientation for dipole field.

Given that “N™ is the fundamental harmonic number (1 for
dipole, 2 for quadrupole, etc.), there are 2N current loops that
have the following properties. [The coordinates of one corner of
one loop are (rg, 8y, 2p); we ignore the constant rg.]

J(bo,25) = —J (00, 2,)
(=1)"J. (6 + [N, z5), (—2¢ € 2, < +29); (1)
Jo(bs,20) = —J4(8s, ~20)
= (=1)"J¢(0, + nw /N, ),
n=1..,2N-1.

il

(=80 <8, < +6;);(2)

These equations can be verified for the dipole geometry using
Fig. 1.

* Work supported and funded by the US Departinent of Delense, Army
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We calculate the vector potential A‘\], that is due to the
current loops, as a power series expansion in r™ and sin (m#)
and then gauge transform Ajto Ay, where the § component of
Ay is zero (this simplifies the relationship between the scalar and
vector potentials). The scalar potential V is written as a power
series expansion in r™ and sin (m#f) times unknown functions,
Fpu(z), of the z coordinate. The functions Fi,,(z) are determined
from a truncated power series for Ay,. Once the scalar potential
V is determined, the components of the vector potential Ay are
obtained from Eqgs. (3) and (22) (see below) in this gauge where

Ay, = 0. For each multipole component “m” in Eq. (22), we
have

r sin{mé

)
A = - arvvm s
e m cos(mb)
A, = T sm(m@)azvm
. m cos(mb)

Assumptions and Formulas

A time-independent magnetic fleld in a source-free region
can be calculated from either a vector A or scalar V potential
function where

B=-VV=Vx4 (3)

and V satisfles Laplace’s equation (the divergence of B is Zero).
The magnetic fleld that is due to a current distribution is
obtained from the vector potential

o (7, (lV
A =42 [ R @)

f— 7

[The subscript J indicates that this vector potential is calcu-
lated from the current-density distribution. The subscript V,
introduced below, denotes the vector potential that is related to
the scalar potential V' through Eq. (3).]

Because the curl of the gradient of a scalar function is iden-
tically zero, the magnetic field is invariant under the gauge trans-
formation

Av=4;4Vp , (5)
which is used to calculate ¢ for a gauge where 4y, = 0. Because

1
A\/g = AJ,, + ;agtp =0 ,

Il

© ~/rAJ9d9 and

—

Ay

I

Ay—a,0,, [riAsdd; —agAy, — k0., [ r;4,,d0;.(0)

(The @’s represent unit vectors in cylindrical coordinates).

A general form for the scalar potential thatsatisfies Laplace’s
equation (and Bessel’s equation in cylindrical coordinates) and
reduces to a harmonic expansion for an axially independent field

is?

V(rs, 05, 25)
. 2
. m! —710 ,c) Fm( )

= Z Ty COS n19f + em) Z nn[(n + 7)) ! ’

m>1 n=0

(7)
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where m is an integer and 6,, is a constant phase angle that
depends on the index m. [A more general form (not needed
here) for the scalar potential is required if ,, is not constant
in z. Then, a separate expansion in sin(m#8) and cos(m#d) is
necessary.] The scalar potential in Eq. (7), which consists of a
power series expansion in r for each harmonic number m, is fully
determined by the functions Fy,(z) and constant phase angles
8,,. The boundary conditions imposed on the F,,(z)’s are that
all the derivatives of F,, vanish at z — +oo. Table I lists the
coeflicients

m!
Ka(m,n) = 227nl(n 4+ m)!

in Eq. (7), which indicates the rapid convergence of the power
series in n.

TABLE [. FUNCTION K;(m, n).
m n
0 1 2 3 4 5 6

1 { L.OE+400 | 1.3E-0L | 5.2E-03 | 1.1E-04 | 1.4E-06 | 1.1E-08 | 6.7E-11
2 | 1.0E400 | 8.3E-02 | 2.6E-03 | 4.3E-05 | 4.5E-07 | 3.2E-09 | 1.7E-11
3 | 1.OE+00 | 6.3E-02 | 1.6E-03 | 2.2E-05 | 1.9E-07 | 1.2E-09 | 5.6E-12
4 | L.OE400 | 5.0B-02 | 1.0E-03 | 1.2E-05 | 9.7E-08 | 5.4E-10 | 2.2E-12
5 | 1.0E+00 | 4.2E-02 | 7.4E-04 | 7.8E-06 | 5.4E-08 | 2.7E-10 | 1.0E-12

The minimal magnetic scalar potential symmetry condition
for a perfectly constructed multipole magnet with fundamental
harmonic number N is

V(8) = ~V(6 +7/N) (8)

(this includes the fringe field region), which is only true when

the index m in Eq. (7) is restricted to

m=N(2k+1), k=0,1,2,.... (9)

The z component of the vector potential Ay, must satisfy
the general analytic expression obtained by combining Eqs. (3)
and (7); therefore, we find that

Ay, =— 2 rfsin(méy + 6..)

§ 2 (m —1D{m+2n)(~ T?OE/ [4)" Fn(25) '

ni(n +m)! (10)

n=0

We use Eq. (4) to calculate the vector potentidl A for cur-
rent loops, perform a power series expansion on A], and gauge
transform A to Ay using Eq. (6). The F,(z)’s are obtained
by equating the coefficient of the lowest power of r for each
sin(mé + 6,,) in the power series expansion for Av to the ex-
pansion coefficients in Eq. (10). Given the Fp(z)'s, Eq. (7)
determines V.

Several power series expansions that are needed to calcu-

late the vector potential from the current distribution are listed
below?:

(2n)!
71,!)222”{"/" ’

/ dX X 2Pni(gml)? o
Wyl Wi 2m(2m)!t £ (

W=1+X2?,
(14 %)/ = i": (-1r@n)X"

2211(711)2 ) X < 1 (12)

n=0

WE3-26

os?H g (2n + 1)! Z( cos(2k + 1)8
n

27n TR+ D - R
n= 0’1727"'7 (13)
an , _ (2n)! cos 2k6 1
050 = om ; Ol = 3y
n=123.. (14)

Calculation of the Vector Potential

In this section, A is calculated for current loops and is
gauge transformed using Eq. (6) to determine Av

Normalize all dimensions to the magnet coil radius rg. Let
Ry =rg¢/ro, where rp < rg, Z5 = z¢/rg and Z, = z,/ry. Equa-
tion (4) becomes

- T

Ag(ry,bp,25) = #ZWO
arJgsin(8; — 8,) + dgJgcos(8s — 6,) + kJ,

x / = d6.dZ, .
[1+R§—2R;cos(9f~63)+(Zf—ZQ)Q (1)

The surface current densities Jg and J, result from a con-
stant current I in wire elements. Therefore, the current densi-
ties are the product of Iy times the appropriate delta functions
in 6 and z. We rewrite Eq. (15) [using a “suggestive” notation
where the (£1j) indicates that the appropriate current direction
must be taken into account] as

5= S ()

wires

y

[1 + R2 2Ry cos(6; — 0,) +(Z; — Z,)?
X [&76(237 Z,L,ire)sirl(gf — 63) + dgé(zs, Zu,ire)COS(gf — 63)
+ }}5(037 6luire)]- (10)

A power series expansion in R, and cos(#) is required for
the integrand in Eq. (16). Let T represent components of the in-
tegrand in Eq. (16) and p denote an exponent (p = 0 corresponds
to the k component, p = 1 corresponds to the Gy component, and

the &, component is not needed) and then perform the following
algebraic steps:

dfdZ,

T RY cos™(87 —8,)
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[1 + R% — 2R cos(8; — 8,) + (Z; — Zs)'z]
R’; cosP(ff — 6,)

2Ry cos(8;—0.) 1) /2
{[1+R}+(Zf—25)2} [1"_’—“L—1+R;+(z,—z,)2”

(2771)!2’”}?,7}‘”) cos™*P(6; — 6,)
m=0 22m ()2 {1 +R24(Z; - 23)2]

(2172)!]?;1“' co

m+1/2

Sm+1’(0f - 93)

HP”18

2 nl+l/‘.3 :

D 2m(ml)2 (14 (2 = 200" 1+ s

(17
where Eq. (12) has been used. (This expansion is valid because
the expansion parameter is less than 1 in all cases.)

Equation (17) contains cos™*P(g; —6,) terms. These terms
can be converted into cos[(m + p)(8; — 6,)] terms by using
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Eqs. (13) and (14). We are interested only in the R’}”’p cos{(m+
p)(85 — 6,)] terms in Eq. (17) that will be related to Eq. (10).
These terms only appear when k = n = (n + p) in Eqgs. (13)
and (14). (All other terms have the form R’f"+" cos(mf) where
n > 1.) Also,

14 !

14+(Z5 - 2,)

RZ —(m+1/2)
|

and, therefore,

oo m+p -
T = (2m)IRF P cosl(m + p)(6s — 6] (18)
L ormAp=1(mI)2 [1 4 (Z) — Zs)z]m+1/2

The ellipsis in Eq. (18) refers to the nonrequired terms.

By combining Eqs. (6), (16), and (18) and considering only
terms of the form R7(cos,sin)(md), the following equation is
obtained:

AL, =k
Vi Ton

> (I /d&sdzs

s (2m)!RY
><222%1 N2 Zee 7 2ym+1/2
s 22 ()21 + (25 — Z,)7)

X {8(8,8ire) cosim(8y — 8,)]
+ 8(Zs, Zowire (25 — Zy)sinfm(8s — 6,)]} .

(19)

The full power series for Ay, contains terms that are not re-
quired for calculating V. The prime on Ay, indicates that the
nonrequired terms are ignored. The m = 0 term in Eq. (19) was
ignored because the formalism does not handle this case.

Equation (19) is integrated over one current loop centered
about (8,,z,) = (0,0), with one corner at (8,,zs) = (8o, z0)-
The current direction is given in Fig. (1). Equation (19), using
Eq. (11), becomes

I -Rm
y " - _ Holo Z —sm (m8y) sin(méy)
m=1
{ [ (25— 2Zo) B (Z5 + Zo)
72— 2007 L4 (2 1 20707
1%~ (2n)! (Zs— Zy)
+2Z "MJlﬂﬂ—%H”W

(Zy + 20) ” (20)

14 (Zf + Zo)nr1s2

Equation (20) gives A}, for a single current loop. The po-
tential function A%, (2N) for a magnet containing 2N alternating
in sign current loops is

2N-1

S (1, [o— (60 + 5F))]

n=0

A,V, (2N ~loops) =
= 2ATA,Vz(single—~loop) > (21)

where the index m in Eqs. (20) and (21) is restricted to the
values in Eq. (9).
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In Table II the coefficients

(2m)!

KZ(TN') = 22,”(,,”!)2 )

TABLE 1I. FUNCTION K,(m).
m 0 1 2 3 4 5 6
Ko(m) { 1.0 | 5.0E-01 | 3.8E-01 | 3.1E-01 | 2.7E-01 | 2.5E-01 | 2.3E-01

which appear in Eq. (20), are tabulated and this table indicates
that all of the terms for a given m should be retained for calcu-
lating the potential function in Eq. (20). (This statement also
applies to the calculation of V, below.)

Magnetic Scalar Potential

Combining Egs. (7), (10), and (2
potential for a single current loop

0) gives the magnetic scalar

I
Visingle—loop) = el Z Dlsin(méo )R cos(mby)

m2>1
xi_(_l—mfi_azj lm¥l (2n)! (Z§ — Zy)
= 25751 +m)t % 2 L 22 (nl)? |14 (Zy — Zo )21/
(Z5 = Zo)

(14 (Z5 + Zg)2|nt1/2 22m(jn!)?

_ (Zs + Zo) H
L+ (Zf+ Zo)2|mtt/2 | |-

N (Zs+ Zy) } (2m)!
e e e

(22)

(Note that 6,, = 0.) For a 2N symmetric magnet, combining
Eqgs. (21) and (22) gives

‘/(2N —loops) = 2-‘T\TV'(s,ingle—Xoop)
m=N2k+1), k¥ =1,2,... . (23)
(Remember that Ry =rs/ro, Zy = z¢/ro, Zg = z0/70.)

Summary

Equation (22) gives the magnetic scalar potential for a sin-
gle current loop on a cylinder of radius ry centered about 8, =0
and z, = 0, with one corner at 8, = 8y and z, = z5. All the
lengths in Eq. (22) have been normalized to ro (Rf = ry/r,
Zy = zf[re, Zo = zo/Te). Equation (23) gives the magnetic
scalar potential for an N-multipole magnet with 2N symmetri-
cally spaced current loops.

Equation (22) can be used to study the effect of errors in
radial and angular current loop position and has been used to
study certain errors in our Lambertson magnets.
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