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Abstract 

We determine analytic functions that describe the fringe 
field region of Lambertson, or cosine-wound, magnets. In partic­
ular, we are interested in determining the aberrations, up to fifth 
order, of a beam transiting our large-bore current-dominated 
quadrupoles. We determine the scalar potential from the vector 
potential calculated first for a single current loop and then for 
a 2N symmetric current loop multipole magnet. 

Introduction 

Figure 1 shows the geometry used for calculating the mag­
netic potential functions (dipole geometry is indicated in the 
figure). The magnet coils are placed on a constant radius (1'0) 
cylinder centered at the coordinate origin, with the z axis as the 
rotation axis and with one current loop centerecl about B = O. (If 
the magnet has layered coils wi th different 1'0, add the separate 
potential functions for each layer.) A fielcl point is clescribed hy 
the coordinates (1' f, B f, z f) and a source point by (TO, B s, z s). The 
surface current densities J, which provicle the magnetic ficld, are 
assumed to result from B-directional and z-directional current­
carrying zero-radius wires. 
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Fig. l. Magnet coil loop orientation for dipole ficld. 

Given that "N" is the fundamental harmonic number (1 for 
dipole, 2 for quadrupole, etc.), there are 2N current loops that 
have the following properties. [The coordinates of one corner of 
one loop are (To,Bo,zo); we ignore the constant TO.] 

Jz(Bo, zs) = -Jz ( -Bo, zs) 

= (-l)"JzCBo +mr/N,zs), (-zo ~ Zs ~ +zo); (1) 

JoW" zo) = -Jo(Bs, -zo) 

= (-l)".Jo(B s + mr/1V, zo), (-Bo ~ ()s ~ Ha); (2) 

11 = 1, ... , 2N - 1. 

These equations can be ,-erificd for the dipole geollletry using 
Fig. l. 
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We calculate the vector potential A;, that is due to the 
current loops, as a power series expansion in rm and sin (m()) 

and then gauge transform A; to Av, where the B component of 
Av is zero (this simplifies the relationship between the scalar and 
vector potentials). The scalar potential V is written as a power 
series expansion in rm and sin (mB) times unknown functions, 
Fm(z), of the z coordinate. The functions Fm(z) are determined 
from a truncated power series for A v,. Once the scalar potential 
V is determined, the components of the vector potential Av are 
obtained from Eqs. (3) and (22) (see below) in this gauge where 
Av. = O. For each multipole component "m" in Eq. (22), we 
have 

- _~ si11(m()) G V 
Am, - rn cos(lnB) r Tn, 

Am
e 

= _~ .sin(IH()) Gz Vll!' 
m cos(m()) 

Assumptions and Formulas 

A time-independent magnetic field in a source-free region 
can be calculated from either a vector A or scalar V potential 
function where 

jj = -VV = V x A (3) 

and V satisfies Laplace's equation (the divergence of jj is z('ro). 
The magnetic field that is due to a current distribution is 

obtainecl from the vector potential 

-(-:' ) -~ J J(t8) dVS 
A; 1 f - 1_ -I' 47r 1'f-1'8 

(4) 

[The subscript J indicates that this vector potential is calcu­
lated from the current-density distribution. The subscript V, 
introduced below, denotes the vector potential that is related to 
the scalar potential Y through Eq. (3).] 

Because the curl of the gradient of a scalar function is iden­
tically zero, the magnetic field is invariant uncleI' the gauge trans­
formation 

(5) 

which is used to calculate rp for a gauge where A. v, = O. Because 

1 
A. v• = A.;. + -Gorp = 0 , 

T 

rp = - J TA;,d() and 

Av = A; - arGr! J TfA;.d()f - ao.4.;, - kDz! J rf·4. J,dBf .(G) 

(The a's represent unit vectors in cylindrical coordinates). 
A general form for the scalar potential that satisfies Laplace's 

equation (and Bessel's equation in cylindrical coordinates) and 
reduces to a. harmonic expansion for an axially indqwndcnt fielel 
is 1 

(7) 
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where m is an integer and Bm is a constant phase angle that 
depends on the index m. [A more general form (not needed 
here) for the scalar potential is required if Bm is not constant 
in z. Then, a separate expansion in sine mB) and cos( mB) is 
necessary.] The scalar potential in Eq. (7), which consists of a 
power series expansion in 'r for each harmonic number m, is fully 
determined by the functions Fm(z) and constant phase angles 
Bm. The boundary conditions imposed on the Fm(z)'s are that 
all the derivatives of F m vanish at z ---7 ±CXl. Table I lists the 
coefficients 

m! 
KI(m, n) = 22nn!(n + m)! 

in Eq. (7), which indicates the rapid convergence of the power 
series in n. 

TABLE l. FUNCTION Kj(m,n). 
m n 

0 1 2 3 4 5 6 
1 1.OE+00 l.3E-01 5.210-03 l.lE-04 l.4E-06 l.lE-OS G.7E-ll 
2 l.OE+OO S.3E-02 2.GE-03 4.3E-05 4.5E-07 3.2E-09 l.7E-ll 
3 1.0E+00 6.3E-02 l.6E-03 2.2E-05 1.9E-07 l.2E-09 5.GE-12 
4 l.OE+OO 5.0E-02 l.OE-03 1.2E-05 9.7E-OS 5.410-10 2.2E-12 
5 1.0E+00 4.2E-02 7.4E-04 7.SE-06 5.4E-OS 2.7E-IO 1.0E-12 

The minimal magnetic scalar potential symmetry condition 
for a perfectly constructed multi pole magnet with fundamental 
harmonic number N is 

V(B) = -1/(B + r./N) (8) 

(this includes the fringe field region), which is only true when 
the index m in Eq. (7) is restricted to 

m=N(2k+l), k=0,1,2, .... (9) 

The Z component of the vector potential A v, must satisfy 
the general analytic expression obtained by combining Eqs. (3) 
and (7); therefore, we find that 

(10) 

vVe use Eq. (4) to calculate the vector potential AJ for cur­

rent loops, perform a power series expansion on AJ, and gauge 
transform JL to Av using Eq. (6). The Fm(z)'s are obtained 
by equating the coefficient of the lowest power of 'r for each 
sin(mB + Bm) in the power series expansion for Av, to the ex­
pansion coefficients in Eq. (10). Given the Fm(z)'s, Eq. (7) 
determines 1/. 

Several power series expansions that are needed to calcu­
late the vector potential from the current distribution are listed 
below2 : 

(11) 

(12) 

2n+1 (2n + I)! 2:=n cos(2k + I)B 
cos B = , 

22n (n+k+l)!(n-k)! 
k=O 

n = 0,1,2, ... ; (13) 

cos B = -- "" + --2n (2n)! [ n cos2kB 1 ] 
22n - 1 ~ (n + k)!(n - k)1 2(n!)2 

n=I,2,3,... . (14) 

Calculation of the Vector Potential 

In this section, AJ is calculated for current loops and is 
gauge transformed using Eq. (6) to determine Av,. 

Normalize all dimensions to the magnet coil radius 'rOo Let 
Rj = 'rj/'ro, where 'rj < ro, Zj = zj/ro and Z. = z./ro. Equa­
tion (4) becomes 

- fl-o'ro 
A J( r j , B j , Z j) = 4;-

J arJusin(Bf-B.) +auJucos(Bj-B.)+ kJz dB dZ 
x 1/2 • • . 

[1 + R} - 2R j cos( B j - B.) + (Z j - Z.) 2] (15 ) 

The surface current densities Jo and Jz result from a con­
stant current 10 in wire elements. Therefore, the current densi­
ties are the product of 10 times the appropriate delta functions 
in Band Z. \\'e rewrite Eq. (15) [using a "suggestive" notation 
where the (±Io) indicates that the appropriate current direction 
must be taken into account] as 

- fl-
o

"" AJ = - D (±Io) 
4r. . 

WlTes 

J dB.dZs 
X 1/2 [1 + R} - 2Rfcos(B j - B.) + (Zj - Z.)2] 

x [aro( Z., Zwire) sine B f - Bs) + aao( Zs, Zwirc) cos( B f - B 8) 

+ kO(B., Bwire)]. (16) 

A power series expansion in R f and cos( B) is required for 
the integrand in Eq. (16). Let T represent components of the in­
tegrand in Eq. (16) and p denote an exponent (p = ° corresponds 
to the k component, p = 1 corresponds to the au component, and 
the ar component is not needed) and then perform the following 
algebraic steps: 

RjcosP(B f - B.) 
T= -----~--~-----~ 

[1 + R} - 2Rfcos(B f - Bs) + (Zf - Z8)2] 1/2 

RjcosP(B f - ( 8) 

( 17) 

where Eq. (12) has been used. (This expansion is valid because 
the expansion parameter is less than 1 in all cases.) 

Equation (17) contains ("Osm+p(Bj-B.) terms. These terms 
can be converted into cos[(m + p)(B f - B.)] terms by using 
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Eqs. (13) and (14). We are interested only in the R'f+P cos[(m+ 
p)(Bf - Bs)] terms in Eq. (17) that will be related to Eq. (10). 
These terms only appear when k = n = (n + p) in Eqs. (13) 
and (14). (All other terms have the form Rj+n cos(me) where 
n;::: 1.) Also, 

[ 

2] -(m+l/2) 
1+ (Rf)2 =1- ... 

1+ Zf-Zs 

and, therefore, 

<>0 (2m)!R'f+P cos[(m + p)(Bf - Bs)] 

T = ~o 22m+p-1(m!)2 [1 + (Zf _ Zs)2]m+l/2 + .... (IS) 

The ellipsis in Eq. (IS) refers to the nonrequired terms. 
By combining Eqs. (6), (16), and (IS) and considering only 

terms of the form R'}' (cos, sin)( me), the following equation is 
obtained: 

Alv, =~: L (±Io) J dBsdZs 
wzres 

<>0 (2m)!R'}' 

x ~l 22m(m!)2 [1 + (Zf - ZsJ2]m+l/2 

X {8( e so Bwire) cos[m( B f - B s)] 

+ b(Z.,Zwire)(Zf-Zs)sin[m(Bf-B.)]}. (19) 

The full power series for A v, contains terms that are not re­
quired for calculating V. The prime on A v, indicates that the 
nonrequired terms are ignored. The m = 0 term in Eq. (19) was 
ignored because the formalism does not handle this case. 

Equation (10) is integrated o\'er one current loop centered 
about (B.,zs) = (0,0), with one corner at (e"z.) = (Bo,zo). 
The current direction is given in Fig. (1). Equation (10), using 
Eq. (ll), becomes 

I Polo L= Iep 
A\· = - -- -- sin(mBf ) sin(meo) 

, 7r In 
m=} 

Equation (20) gives A~, for a single current loop. The po­
tential function Alv (2N) for a magnet containing 2N alternating 
in sign current loops is 

2N-l 

Alv, (2N-loops) = L (-l) nAlv, ref --> (e f + r;;)] 
n=O 

= 2N Alv, (single-loop) , (21) 

where the index m in Eqs. (20) and (21) is restricted to the 
values in E(j. (0). 

In Table II the coefficients 

which appear in Eq. (20), are tabulated and this table indicates 
that all of the terms for a given m should be retained for calcu­
lating the potential function in Eq. (20). (This statement also 
applies to the calculation of V, below.) 

Magnetic Scalar Potential 

Combining Eqs. (7), (10), and (20) gives the magnetic scalar 
potential for a single current loop 

V(single-loop) = flolo L(m -l)!sin(mBo)R'}'cos(mBf ) 
7r 

m~l 

(Note that em = 0.) For a 2N symmetric magnet, combining 
Eqs. (21) and (22) gives 

V(2N -loops) = 2NV(single-loop) 

m=N(2k+l), k = 1,2, .... 

Sunll11ary 

(23) 

Equation (22) gives the magnetic scalar potential for a sin­
gle current loop on a cylinder of radius 1'0 centered about B. = 0 
and z. = 0, with one corner at B. = Bo and zs = zoo All the 
lengths in Eq. (22) have been normalized to TO (Rf = I'J/I'O, 

Zf = zf/1'0, Zo = zo/1'o). Equation (23) gives the magnetic 
scalar potential for an N-multipole magnet with 2N symmetri­
cally spaced current loops. 

Equation (22) can be used to study the effect of errors in 
radial and angular current loop posi tion and has been used to 
study certain errors in our Lambertsoll magnets. 
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