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Abstract

The transverse motion of a heam traversing a narrow beam
pipe is modified by resistive-wall effects. Depending on the
strength of the focusing force from the alternating wiggler
field, the effect ranges from a modification of the oscillation
to a growth in transverse displacement with the length of pipe.
"This transverse effcct saturates after a number of bunches have
passed. The saturated transverse effect depends only on the
pipe radius b (it increases as 1/b%), but is independent of the
thickness 7 and conductivity o of the pipe. However, 7 and o
affect the time needed to attain saturation.

Introduction

When a charge travels in a smooth pipe of small radius,
it will generate a wakefield if the pipe is not perfectly con-
ducting. The transverse force is zero inunediately behind the
bunch because of the cancellation of the clectric force of the
image charge and the magnetic force from the induced current.
A finite conductivity allows the induced magnetic field to pen-
etrate into the metal pipe with the result that the magnetic
force decays much more slowly than the clectric force. This
gives risc to a net wakefield force on the later bunches. This
force increases rapidly as the radius of the pipe decreases. In
future free-electron lasers (FELs), because of efficiency require-
ments and Hinitations on achievable magnetic field, an electron
beam is required to travel in a pipe several millimmeters in diam-
eter over a length of 10 mm or more in the wiggler. Therefore,
the question arises as to whether transverse resistive-wall ef-
feets of the electron beam could compromise the performance
of the wiggler.

Estimates of the effects of the transverse resistive-wall in-
stability were done previously with formulae derived by Ca-
poraso et al.! These formulac were derived for a de beam and
with an induced maguetic field decreasing as the square root of
time, a dependence valid only for a limited time. For an FEL
injected with an f linac that has a bunched beam and a pulse
of long duration, these results are not appropriate. Neil and
Whittum? have recently analyzed the case of a bunched beam.
They investigated the problem in the frequency domain and
used the dominant mode in the expression for the wakefield.
Their analysis is equivalent to the case where the first bunch is
displaced off-axis and the subsequent bunches follow on-axis.

In this paper, an analysis of transverse resistive-wall insta-
bility of a bunched clectron beam in a wiggler is carried out.
The full expression for the wakefield is used and a complete
solution 1s obtained analyticallv., The steady-state solution is
discussed. Because of space limitations, proofs of the equations
are not given. These details can be found elsewhere.’

* Work supported and funded by the US Departinent of Delense, Army
Strategic Delense Command, under the auspices of the US Department of
Lnergy.
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Transverse Resistive-Wall Wakefield of a
Bunched Beam Moving in a Circular Pipe

The transverse wakefield induced by a beam of relativistic
particles off-axis has been investigated by Bodner et ol.* When
a de¢ beam current I established at time ¢+ = 0 is traveling at a
distance £ off-axis in a pipe of inner radius b, outer radius d,
thickness 7(= d—b), and conductivity o, the wakeficld consists
of a magnetic field By given (in cgs units) as

_ 8I¢ 2L exp(—t/T3)

Bty =)~ - (1)

where
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Ci=y; [Jo(yld/b)] 1> : (3)

and y;’s are zeros of the function
Jo(yd/b)Na(y) — Jaly)No{yd/b).

Here J;’s and N;'s are Bessel functions of the first and second
kind, respectively.

The expression for the magnetic field at time t behind a
(delta-function) bunch with charge ¢ is found from Eq. (1) to
be

8 = xp(—t T:)
B =5 Y e @
=1 il

The magnetic ficld of a bunched beam traversing the heam pipe
with a fixed time interval A between any two bunches will be
a sum of the fields of the individual hunches. All the bunches
taken together form a pulse. In Eq. (4), the longest decay time
is Ty; for a thin-wall approximation (small 7/b) it is given by

2nobr
T =~

(5)

The decay time T is usually referred to as the diffusion time
and has the value of 0.5 us for the parameters in Table I. These
parameters are related to paramcters used for a proposed XUV

FEL.5

o2

TABLE I. RELEVANT PARAMETER VALUES

b 0.18 cmn

d 0.198 cmm

e 2 x10"s7! (for titanium)
B 0.73 tesla

pulse length 300 s

energy 500 MeV

pipe length 800 cin

bunch separation 6.8 ns

300 mA

average current,
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An approximate formula for the magnetic field behind a
(delta-function) bunch, valid for short times, can be derived
from Eq. (4) as

2¢¢ :
By(t) = RIS (6)

The variation of B, with ¢t as given by the exact formula
[Eq. (4)] is compared with the approximate formula [Eq. (6)]
in Fig. 1. The approximate formula is a good approxima-
tion to the exact formula up to one diffusion time. After one
diffusion time, the magnetic field drops off rapidly as an ex-
ponential function of time because it has diffused through the
pipe wall. One diffuston time is much shorter than the value
of our pulse length of 300 ps (sce Table 1), which is typical of
an rf-based FEL. Therefore, the exact formula should be used
for the analysis of such rf-based FELs.
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Fig. 1. Variation of the transverse resistive-wall wakefield B

The re-
sults obtained by using the exact formula [Eq. (4)] are com-
pared with those obtained by wsing the approximate formula

[Eq. (6)].

with time t clapsed since the passage of a bunch.

Transverse Resistive-Wall Instability
of a Bunched Beam

The beam is considered to be a series of bunches traveling
with speed ¢. The transverse displacement from the axis of the
IVth bunch is denoted by €(z = ¢t, ). Employing the Lorentz
force equation and Eq. (4). the equation of motion for £(¢, I¥)
is found to be

2E(t ) <, Al
o Pl Ky =) Gy exp(—(K = DA/TOHE,D),
=1 =0
(7
where 5
G, = _ eeav (8)

mac2b2Ci Ty
Here wq is the frequency of thie hetatron motion caused by
the alternating wiggler ficld, ¥ is the usual relativistic factor,
and v is the z-component of heam velocity. The sum over [
represents the sum of the interactions between the Kth bunch
and the wakefields of all hunches alhiead of it.

Equation (7) has been solved analytically using Laplace
transforms.? In this paper, the analytic solution is given only
for the simple case where the first mode is assumed to dominate
(i.c., only the first term in the sum over 7 is considered). This
assumption is valid for the parameter values given in Table L.
A complete solution is obtained after assuming that the initial
transverse velocity is zero for all bunches and after considerable
manipulation.? For k' > 1
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where ~
E(t, ) = E(t, V) — £(0, ) cos{wot) (10)
and

CIn:(_l),(—n)(——n——l)é'..(—-n——l—kl)‘ (11)
The displacement £(¢, i) is zero for I = 0.

Equation (7) was also solved numerically using a computer
program. The initial displacement £(0,j) was assumed to be
equal to 1.0 for all j. The result for 7 = 300 mA is shown in
Fig. 2, which shows the behavior of £(t, i) as a function of
KA at the end of the pipe (¢f = 800 em). Results obtained
using Eq. (9) confirmn both thie approach to saturation and the
saturation value.® The unbounded growth scen by using the
approximate formula [Eq. (6)] does not exist in actuality be-
cause the magnetic field decays exponentially for times longer
than one diffusion tirne. The adverse effects of resistive-wall
instability on the operation of the FEL are, therefore, limited.
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Fig. 2. The transverse displacement of the beam at the cnd

of the wiggler obtained by numerically solving Eq. (7). The
bunches travel along the beamn pipe and exceute betatron oseil-
lations with frequencies modified by resistive-wall effects. The
amplitude of all oscillations is the same and is normalized to
unity. Results obtained by using the approximate formla arve
also shown.

A simpler expression for the saturation value £(f,00) can
be derived. In the limit ' — oc, all £(#, V) iu Eq. (7) can be
replaced by £(t, 00) to give

d*E(t, oc) )

e (wl = QN xe) =0, (12)
dt?
where - -
0% = Z G; Z exp(—JA/TY). (13)
=1 1=1

The quantity Q2 represents thie defocusing effects of the resistive-
wall instability. For Q% < w2, Eq. (12) is just a betatron oscil-
lation equation with reduced focusing. The betatron frequency
has changed from wg to wo(1—Q2/w?)s . For QF > wl. the defo-
cusing effects become so large that £(#, ac) grows exponentially
with time. It can be shown® that

2l

m~e2h?’

Q2 = (14)
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Thus, Q2 is independent of the conductivity ¢ and thickness
7 of the pipe. For the parameters given in Table I, wy and Q
have values of 9.53 x 107s™! and 3.16 x 107s™1, respectively.
As a final remark, we draw attention to the fact that the
time required to achieve a steady-state solution does depend
on T and o of the pipe. It was seen earlier that the magnetic
ficld diffuses out through the wall on a time scale of one diffu-
sion time (Th). Therefore, one would expect £(¢, I{) to attain
£(t, 00) within a few Ty’s. Using 5T for specificity, we obtain
the number of bunches I, required to reach a steady-state

solution to be
. 10mobr
I\oo ~ —Eg—

For the parameters given in Table I, we estimate the value of

I, to be approximately 330, in agreement with the numerical
result (Fig. 2).

(15)
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