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I. Introduction 

Beam breakup in a mUlti-cavity linac is a 
phenomenon in which excitation in one cavity causes 
deflection of the beam, which then may enhance the 
excitation in a subsequent cavity. In cumulative beam 
breakup the cavities are identical and uncoupled. 
This phenomenon has been analyzed

3
, yielding simple 

formulas for the transient behavior for a beam with an 
initial displacement. If the cavities are coupled, 
one needs to use the eigenmodes of the multi-cavity 
structure. If the modes are well separated, one has 
regenerative beam breakup, with the existence of a 
starting current above which the oscillations are 
unstable

4
. We develop the theory for the intermediate 

case, where the coupling constant, the relative mode 
separation and Q-l are all comparable. The transition 
from cumulative to regenerative beam breakup is 
explored and compared to the results of simulations 
which include the coupling. 

II. Beam Breakup Without Coupling 

The analysis of cumulative beam breakup for a 
tightly bunched coasting beam starts with a set of 
difference equations for the displacement and angle of 
the Mth beam bunch entering the Nth cavity in terms of 
cavity excitation. An additional equation is needed 
for the change in excitation of the Nth cavity as a 
result of the transit of the Mth bunch. These 
equations can be combined into the following single 
difference equation for the displacement S(N,M): 

S(N+l,M) - 2S(N,M) + S(N-1,M) 

where 
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Here w/2rr is the deflecting mode frequency, I is the 
beam current for particles of relativistic energy W, L 
is the distance between cavity centers, l/T is the 
bunch frequency, Q is the cavity quality factor and Z~ 

is the transverse shunt impedance of the cavity 
(including transit time effects). In this paper we 
assume no transverse focussing. Gluckstern, Cooper 
and Channel1

3 
have obtained the solution to Eq. (2.1) 

and, from that, the following approximate expression 
for the transient response to a single bunch initially 
displaced by So: 

S (N, M) exp (-MWT /2Q) [ 
- Re IE exp(iMwT + 3E/2)] , 

So M v'61[ 
(2.4) 

where 

E (2.5) 

Figure 1 contains a plot of S(N,M)/So vs M obtained 

from a simulation for the values r = 2.88 x 10-3 , Q 
1000, wT/2rr = 1.70, N = 30 showing the transient 
amplification of the displacement by a factor of about 
200. Equation (2.4) is an excellent representation of 
the result. 
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In a recent paper, Gluckstern, Neri and cooperS 
explore the effect of smoothly varying parameters by 
starting with a pair of coupled differential equations 
as an approximation to Eq. (2.1) which is valid as 
long as wT/2rr is not an integer. Specifically they 
replace S(N,M) by the complex function z(N,M), with 

S(N,M) = Re [z(N,M) exp(iMWT - wT/2Q)] (2.6) 

and denote the cavity excitation (apart from a factor) 
by 

Re [v(N,M)]G3 - Re [u(N,M) exp(iMwT - wT/2Q)] (2.7) 

After averaging over rapid oscillations they obtain 

a2
z ru 

'" 
aN 2 2i 

(2.8) 

au 
aM - z (2.9) 

The asymptotic solution in Eq. (2.1) can be obtained
S 

(apart from an overall factor) from these two 
equations for large M,N. 
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III. Coupling Between Cavities 

The effect of coupling between cavities is 
introduced by modifying Eq. (2.9) to include the rate 
of change in excitation z(N,M) due to coupling from 
the adjacent cavities

6
• Specifically we start with 

the equation for the excitation due to coupling alone: 

+ 
Q at 2 

(3.1) 

where k is the coupling constant. It should be noted 
that the variables in Eq. (3.1) are the time t and 
cavity number N, rather than M and N as in Eq. (2.9). 
We can convert variables to M and N in Eq. (3.1) by 
using the relation 

t = MT + NL/c = (M + Ns) T (3.2) 

where s L/CT, the ratio of cavity spacing to bunch 
spacing. This implies that v

N
±l on the right side of 

Eq. (3.1) must be evaluated at bunch number M+s to 
correspond to the time t in Eq. (3.2). If one changes 
variable from vN(t) to u(N,M) according to Eqs. (2.7) 

and (3.2), and assumes that u(N,M) is a slowly varying 
function of Nand M, one finds 

au ikWT ] 
aM'" 4 [U(N+1,M-S) e-

ie 
+ u(N-1,M+s) e

ie 
, (3.3) 

where e = SWT. 

The effect of coupling between adjacent cavities 
on beam breakup can therefore be included by adding 
the right sides of Eqs. (2.9) and (3.3) to obtain 

~ i~ ] 
aM '" z(N,M) + 4 [U(N+1,M-S)e-

ie 
+ U(N-1,M+S)e

ie 
. 

(3.4) 

Equations (2.8) and (3.4) therefore represent our 
model for beam breakup with coupling between cavities. 

IV. Solution for Small Coupling 

For small coupling, the term proportional to k in 
Eq. (3.4) will be small, and the solution will be a 
small modification to that corresponding to Eq. (2.4). 
In this case s can be neglected in Eq. (3.4) and one 
can approximate u(N±l,M) by the first term in a Taylor 
expansion around u(N,M) obtaining 

au au 
aM - z + i~u + £ aN (4.1) 

where 

2~ = kWT cos e 2£ = kWT sin e (4.2) 

The term in ~ corresponds simply to a frequency 
change which can be removed by absorbing the factor 

exp(iM~) into u and z, which are now denoted by u and 

z. If one changes variables from M and N to m=M and 
n=Nt£M, Eqs. (2.9) and (4.1) become 

r 

am = z 2i u (4.3) 

identical in form to Eqs. (2.8) and (2.9). The real 
part of the exponent, including that corresponding to 
Eqs. (2.6) and (2.7), is therefore 

-MWT 
exp 

2Q 
+ (4.4) 

which, to first power in £ is 

-MWT 
exp '" 

2Q + 

(4.5) 

We have obtained the exponent numerically from the 
envelope of the simulations and, after subtracting the 
first two terms on the right side of Eq.4}~.5), have 
shown that what remains is linear with M and 
proportional to k, confirming the form of Eq. (4.5). 
From this we conclude that beam breakup is enhanced 
for small positive £ and suppressed for small negative 
£, which is confirmed by the simulations. In fact, 
for the parameters used in Fig. 1, we find major 
modifications (instability) with k ~ .0045 and 
-k ~ .0015. These are remarkably small coupling 
constants for instability, suggesting the need to 
include coupling in the deflecting mode in the design 
of structures like side-coupled electron linacs. 

An interesting feature of Eq. (4.4) is that as 
M ~ 00, there will be a runaway oscillation if 

(4.6) 

corresponding to the definition of a "starting 
cu¥rent", confirmed by simulations only for positive 
£. 

V. Solution for Finite N 

It is possible to solve Eqs. (2.8) and (3.4) by 
writing the solution to Eq. (2.8) (in its finite 
difference form) as 

r 

z(N,M) 2i [u(N-1,M) + 2u(N-2,M) + 3u(N-3,M) + ... J 

(5.1 ) 

and trying solutions of the form exp(pM) to obtain the 
eigenmodes corresponding to p as solutions of an NxN 
determinantal equation. The solution corresponding to 
a starting current occurs for the smallest value of r 
for which the value of p with the largest real part is 
equal to WT/2Q. The form of the elements of the 
determinant suggest that the dimensionless parameter 
y = rQ/wT should be a simple function of x = l/lkIQ, 
more or less independent of other combinations of 
parameters. That this is the case is shown for 
various values of k in Figs. 2 and 3 for N=2 and N=15 
respectively. These figures illustrate the difference 
between positive and negative k. 
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VI. Regenerative Beam Breakup 

The concept of regenerative beam breakup involves 
the interaction of a beam with the transverse modes of 
a long cavity. The analysis of Wilson

4 
leads to a 

starting current given by 

y 

3 
1[ 

for a cavity consisting of N coupled cells, with 

(6.1) 

g(a.) = (1[3 /2 a.
2

) (1 - cos a. - a. sin a./2) having a 
maximum of 1.05 at a. = 2.65. In the analysis, wilson 
assumes that all cavity modes are isolated from one 

another, that is the relative width of a mode, Q-1, 
is smaller than the relative separation of modes, 

IkI/N. 
In the language of the previous section, the 

parameter x takes on a useful physical meaning. For 
cavity modes which are well separated, 
x = 1/1klQ « liN. For a band whose relative width, k, 

is smaller than Q-1 all modes in the band contribute 
at one time, corresponding to the cumulative beam 
breakup limit where x = 1/1klQ »1. Thus the-
intermediate case corresponds to the range 
liN < x < 1, which is the region where we have derived 
the more or less universal curves shown in Figs. 2 and 
3. 

AS a final point, we have solved
6 

the 
determinantal equation outlined in Section V for small 
x, and reproduce Eq. (6.1) for the regenerative beam 
breakup limit. Thus we have developed a formalism 
which includes both the cumulative beam breakup and 
regenerative beam breakup limits and which gives more 
or less universal results in the intermediate region 
between these limits. 
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