
LONGITUDINAL COUPLING IMPEDANCE AND ITS HIGH FREQUENCY BEHAVIOR* 

R.L. Gluckstern and F. Neri 
University of Maryland, College Park, MD 20742 

I.Introduction 

The high frequency behavior of the coupling 
impedance for an obstacle in a beam pipe is of 
considerable importance because of recent interest in 
the acceleration and transport of short beam bunches. 
Lawson

1 
used a diffraction model to show that the real 

part of the longitudinal impedance falls off as 
(frequency)-1/2, a result confirmed by Dome

2 
by an 

approximate calculation for both the real and 
imaginary parts. Heifets and Kheifets

3 
use an 

iteration method to confirm Dome's result for the real 
part. Gluckstern and zotter

4
,S derive an integral 

equation for the axial electric field at the beam pipe 
radius, whose solution is needed to obtain the 
impedance. In this paper we explore approximations to 
the kernel of this integral equation which permit us 
to predict the behavior of the impedance for small 
obstacles as well as for obstacles of arbitrary size 
at high frequency. 

II. Analysis 

The starting point for the analysis is the 
integral equation obtained for the electric field in 
the obstacle at the pipe radius.

s 
Specifically, we 

have 

e- jkz 

and 

Z (k) 1 g 

---- = ---f dz F(z) Z 2 
o ka 0 

jkz 
e 

(2.1) 

(2.2) 

Here kc/2n is the frequency, a is the pipe radius, 
Zo 120n ohms is the impedance of free space, and the 

azimuthally symmetric cavity, of general shape in the 
£,z plane, extends axially from z = 0, to z = g at the 
pipe radius r = a. Apart from a constant, F(z) is the 
axial electric field for r = a and 0 < z < g. The 
component of the kernel from the pipe field is 

2nj 
e-jbslul/a 

en 

K qui) a L b P s=1 s 
(2.3) 

where 

b A2a 2 _ ,2 
(3 = /2 _ k2 a 2 

s J s s J s 
(2.4) 

Here js is the sth zero of the Bessel function Jo(x) 

and b
s 

is to be replaced by -j(3s when js > ka. The 

component of the kernel from the "cavity fields" is 

K (z, z') 
c 

he (z) he (z') 

k 2 _ k 2 
e 

(2.5) 

where the orthonormal (azimuthally symmetric) modes of 
the cavity (with an imaginary metal wall at r = a) are 
defined by 

and where 

v x It e (2.6) 

is the azimuthal component of the normalized magnetic 
field at r = a. 

III. Approximation for a Small Obstacle 

Gluckstern and Neri
6 

have shown that the cavity 
kernel in Eq. (2.5) can be approximated for a small 
obstacle by 

2n 2n 
K (z',z) Sl! or 

c k2all 
Kc(Z',z) ~ kg cot k(b-a) 

(3.1) 

where 1I is the cross sectional area of the cavity of 
arbitrary shape, and where the second form is an even 
more accurate for a narrow pillbox cavity of outer 
radius b. They also show that the pipe kernel can be 
approximated by 

(3.2) 

where toc = .5772 is Euler's constant and where 

[, -jbslul/a 

" 1"1'] 
en e 

H(2) K
O 

Lim L b 
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P 
lul-)O 

0 

s=1 
s 

depends only on ka. They then obtain the integral 
equation 

( dx' f(x') [K - 2~ tolx' - xl ] « 1 

and an expression for the impedance: 

Z (k) 

Z 
o 

1 1 

Sl! nkaf dx f (x) 
o 

(3.4) 

(3.5) 
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where the constant K is 

2j 2j 2 
in 

Il kgC 
(3.6) 

and where 

a 
F(z') = fIx') 

Ilg (3.7) 

Finally, they show that the solution of Eq. (3.4) is 

with 

fIx) 

-1 
A 

A x-1/2 (1 _ X)-1/2 

21l in 2 

Ilka [K + 2j(in 4)/llj 

leading to the admittance 

Z Y(k) 
o = 21lka [- in k:C] 

(3.8) 

(3.9) 

(3.10) 

If one uses an approximate form for KO 
valid for small 

p 
g by setting u - g in Eq. (3.3), one obtains 

Z Y (k) 
o . ,.,. [- 00 

s=1 
b 

II 

. (3.11) 

We have thus obtained a separation of the admittance 
into a smooth imaginary term dependinq on the cavity 
parameters and a complex term dependinq primarily on 
ka (and only logarithmically on g) . 
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k2. 
A comparison of Eq. (3.11), with the replacement 

u ~ k~ tan k(b-a), to the results of a numerical 
program for bla = 1.1, gla = .05 is shown is Figs. 1 
and 2. The solid curves are the real and imaginary 
parts of Y(k) - G(k) + j B(k) obtained from 
Eq. (3.11), which, of course become infinite at 
ka - js' The dots correspond to the results of the 

numerical program. 
7 
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The broad resonance character
7 

of the impedance of a 
small obstacle is apparent from the figure, 
particularly as ka is increased. 

IV. Approximate Form for High Frequency 

We can also solve the integral equation in 
Eq. (2.1) for large k for a specific cavity geometry. 
In this case one obtains expressions for both the 
pipe and cavity kernels by approximating the sums over 
sand l by integrals. The result (for a pill-box 
cavity) is

5 

jll 
K (Iz'-zl):! H(2)(klz'-zl) 

p a 0 

jll 
K (z',z)';; H(2)(klz'-zl) 

c a 0 

leading to the integral equation r dz' G (z') e - j k (z' - z) H ~ 2 ) (k 1 z' - z I) = 

o 

(4.1 ) 

, (4.2) 
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with the impedance becoming 

Z (k) 1 g 

---- ~ ----J G(z) dz Z 21[ka 
o 0 

(4.3) 

Since only a smooth variation of G(z) will contribute 
to the impedance, we approximate Eq. (4.2) for high k 
by using the asymptotic form of the Hankel function 
and neglecting rapidly varyng terms. The result is 
the equation 

J
z dz' G(z') '" 

~ 
o 

whose solution is 

(1 - j) Ynk 

2 

(1 - j) Ynk 
G(z') _ 

21[ .fZ' 

leading to the impedance 

Z (k) 

Z 
o 

_ 1 - j (1[:)1/2 

21[ fu 

(4.5) 

(4.6) 

The high fre~uency dependence in Eq (4.6) agrees with 
that of D[me , and with that of Lawson

1 
and of Heifets 

and Kheifets
3 

who only obtain the real part. 
The same result has been obtained

5 
for upright 

and isosceles right triangles where the pipe kernel 
can also be shown to lead to the same approximate form 
in Eq. (4.1) for large k. It therefore appears that 
Eq. (4.6) is a general result for cavities of width g 
at the pipe radius, but otherwise arbitrary shape. 

V. Causality 

As a final point, the definition of Z(k) in terms 
of the wake function for an ultrarelativistic point 
charge implies that Z(k) is analytic in the lower half 
complex k plane, with 

Z (-k) ~ z* (k) (5.1) 

Use of the Hilbert transform pair allows us to write 
the real part of Z(k) as an integral of the imaginary 
part on the real axis, and vice-versa: 

__ 21[k P JOO dk' Re(k') 
1m Z (k) 

o k,2 _ k 2 

Re Z (k) 
k' dk' Im(k') 

k,2 _ k 2 

(5.2) 

(5.3) 

It is straightforward to show that the real and 
imaginary parts of Eq. (4.6) satisfy Eqs. (5.2) and 
(5.3) for large k, where the essential contributions 
to the integrals OCCur for k' of order k. 
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