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Abstract

The structure of a DT linac is regarded as a tandem
arrangement of sections of coaxial waveguide and circular
waveguide. If these sections are long enough, the dom-
inant mode is sufficient to represent propagation in each
section. Thus the representation of the structure is
reduced to a succession of transmission line segments
connected by equivalent networks of the coaxial line-
circular waveguide Junctions. This equivalent network was
calculated by the Galerkin procedure. This computation is
the main CPU-time intensive ingredient of the theory and
it is easily done on a PC. The complete calculation of
fleld distribution and resonant frequency for a 30 drift
tube linac takes about flve minutes on a VAX. The tilt
resulting from a perturbation of the end sections of the
linac is esnsily calculated directly from the dimensions of
the structure. IFor a uniform structure the agreement with
results obtained by using the SUPERFISH program was
excellent. One can incorporate into this model a represen-
tation of a post coupler as a series resonant circuit con-
nected across the transmission line, with the two parame-
ters determined by the length and thickness of the post.
Numerical experiments show that the post coupler should
be tuned below the cavity resonant frequency for stabiliza-
tion.

Introduction

The DT Linac cavity consists of a long pipe in which
a number of drift tubes are coaxially located as shown in
IFig. 1. Neglecting for the moment the effect of the feed
ports we sce that the structure is a tandem arrangement of
sections of circular and coaxial waveguides. The beam
apertures are usually small enough compared to
wavelength that their effect on fleld distribution can be
neglected. If both the drift tube lengths and gaps are
sufficiently long, the cavity can be represented by a series
of cascaded transmission lines representing dominant
mode propagation in the two waveguides Joined through
two-ports representing the junction of circular and coaxial
waveguides (sec Fig. 2).

The voltage-current transfer matrix of the Junction is
obtained from the scattering matrix, which in turn, is
obtained by the Galerkin procedure.

The resonant frequency is calculated by recognizing
that the voltage at the end of the cavity is zero, while the
current can be set to an arbitrary value; this two-vector is
then multiplied by each successive 2 x 2 transfer matrix
until the opposite end of the cavity is reached; since the
voltage at this end must also be zero, frequency is varied
until this condition is satisfled. The dominant mode
voltage distribution is then checked to identify the cavity
mode.

Once the resonant frequency is found, the fleld distri-
bution can be obtained. The dominant waveguide mode
contributions are obtained directly from the voltages and
currents previously calculated at each interface. In order
to calculate higher order mode contributions, first the
incident dominant mode wave amplitudes, from both
sides, onto a Junction are calculated from voltage and
current; then, using the scattering coeflicients obtained in
the solution of the coaxial-circular waveguide discon-
tinuity problem, the amplitudes of all higher order modes
exceited at each Junction are calculated. Once the fleld dis-
tribution is known, stored energy in the cavity and wall
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losses can be calculated.
The Discontinuity Problem

The transverse part of the electromagnetic fleld in a
homogeneously filled waveguide of uniform cross-section
can be expressed in a modal series

E(x,y,2) = 33Va(2) ea(xy) . (1)

I

H(x.v,2) = 31(2) hy(x,y) , (2)
n

when g, and h, are vector mode functions for electric and
magnetic flelds for the n™ mode, while Vv, and In are vol-
tage and current satisfying transmission line equations. In
the case under consideration, only angularly independent
TM modes are involved. In circular waveguide the mode
functions are

en = - LT Y2 (xyr/a) /ad,(x,) - 0= 12,0, (3)

where x, is the n™ root of J,(x) = 0. Similarly, for the

coaxial waveguide, the mode numbers X, are the roots of
Zo(f(ma/b); where

. 7‘1’1/‘2 Jo(er/b)No(Xm - No(er/b)‘Io(Xm)
ZO(X[nr/b) = /2
[JJ(XHI)/Jg(aXm/b) - 1}
(4)

and the mode functions are

€ = — Lo XmZd(Xpr/b)/b , m =1,2,3,... (5a)
in addition to the TEM mode, for which

&, = i(2mfn(a/b)) 2/ . (5b)

The propagation constants of these modes are given by

A/n: \V (Xn/a)2 - (W/C):2 and ﬁm: V ()‘(m/b)2 - (“-)/C)2 ’

where w is the angular frequency and ¢ is the velocity of
light in free space. The wave impedance is given in both
cases by (7v/lwe,). Due to the choice of normalization
electric and magnetic mode functions are related by
h=z,xe.

The Galerkin procedure used here to solve the
discontinuity problem makes use of the representation on
both sides of the junction and of the continuity of tangen-
tial flelds. For unit voltage incident wave, the transverse
electric fleld is

o8]
E =g e T+ 3 Qnsll,ne’Ynz ' (6)
0 =1
where S;,, are as yet unknown scattering coeflicients.
The corresponding magnetic fleld is given by

o0
PRl It - TnZ -
“LoxHy=eYie U - 3T e VS e, (7)
n=t
where Y, is the modal wave admittance. Similarly, we
have for the transmitted flelds in the coaxial region

5]
N mZ
E - Z ngQI,me,7 ’ (8)
m =0
o] . A
710)(}—[&: Z €m Yrms?.l,m‘3 ™. (9)
m =0
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We will eliminate S;; ;, and use S,; ,, as unknowns. Con-
tinuity of E, at z= 0 yields, by equating Eq. (8) and Eq.
(8), multiplying by e, and integrating over the cross-
section,

o0
Sll,l/+5l} = 2 PmuSQI,m' Pny = f e, &y da, (10)
m=0
the integral extending over the cross-section of the coaxial
line. Equating H, from Eq. (7) and Eq. (9) at z= 0, multi-
plying by gu and integrating gives

. 5]
SoruYu + 30 PouSiinYn + Pru(Syy,~1)Y, =0 .(11)
n=2
Substituting for S;, ;, from Eq. (10) and interchanging the
order of summation, we obtain

. o 00

SQI,/AY;[ + E S21,m{ E anmnpn/t }= 2Y1P1y -(12)
m=0 n==1

Since g can take on any value, Eq. (12) is an inflnite set

of linear equations in an inflnite number of unknowns

So1,mé

o0
E Am,usm,m = Bp. ’ (13)

m=0

nut mn

N o0
where Ay, =Y, 68 + 3V P, Py, and
n=—=

B, = 2Y,

This infinite set can be truncated so that the maximum
value of m is of the order of 10 and the sum Ap, usually
converges rapidly enough so that 20 terms give sufficient
accuracy. Once S, ,, have been calculated S,,, can be
obtained from Eq. (10).

For the case of incidence from the coaxial side we
proceed in similar fashion, using the modifled reflection
coeflicients Sy, 1 +6,5) as unknowns; we obtain for these a
set of equations, with the same matrix A but with the
inhomogeneous terms B, = 2Y, 8/
The transmission coefllcients in this case are

(o)
Sien = Y (Segm+dm) Popm - (14)
m=0

mu’

The integration in the scalar products can be carried
out explicitly and we obtain

Pao = (2/fna/0) 2 1,00/ S () (159)
2 o a0 /a) [ 52 * |

o 12
Jl(Xn) [JOQ(X/m)/JOQ(Xm)/Jo.(Xma/b)‘q
m 5 0. (15b)
Resonance Condition

The discontinuity problem discussed above Yyielded
the unnormalized scattering matrix for the Junction,
where only the dominant modes are retained. For circuit
calculations either a transfer-scattering matrix or a
voltage-current transfer matrix is needed. The latter,
denoted by Tyyc, was chosen to simplify the computer
program, its elements are simply related to the elements
of the scattering matrix.

If the junction is reversed, with circular waveguide on
the right, its voltage current transfer matrix Tcw is the
inverse of Tywe. We will denote by T, the transfer matrix
of the n™ section of transmission line in the equivalent
circuit. When n is odd, the transmission line is that for
the dominant TM,, mode of the circular waveguide and
when n is even, it is that for the TEM mode on the coax-
ial line. There are N coaxial sections (number of drift
tubes) and N+ 1 circular waveguide sections.

The voltage at the right end of the structure is zero
and the short-circuit current can be arbitrarily set to any
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convenient value I, since eventually all flelds have to be
multiplied by a constant which will insure proper normali-
zation. The voltage and current at the left end terminals
of the circuit shown in Fig. 1 are

A%
1

0
)=T2N+1'TWC'TCW """ Ta'Twc'Tz'Tcw'T1'[IO]

Since all the transfer matrices are frequency-dependent, so
is the terminal voltage V. Since, for cavity operation, this
must be zero, we search for the resonant frequency f,
such that V(f,) = 0.

Numerical Results

The calculation of the scattering matrix of the discon-
tinuity typically took into account 10 modes in the coaxial
waveguide and about double that number in circular
waveguide. This ratio, which depends on the ratio of
waveguide to drift-tube diameters, must be maintained in
order to avoid relative convergence problems normally
associated with the Galerkin mode-matching procedure,
Results obtained were in very good agreement with those
obtained using the SUPERFISH program.

Field distributions obtained by the Galerkin method
exhibit a behavior similar to the Gibbs' phenomenon (cf.
Fig. 3). Hence no significance should be attached to
values of flelds calculated in the immediate vicinity of a
Junction. The more modes are taken into account, the
narrower the region in which this occurs.

A sample fleld distribution for a ramp gradient linac
is shown in Fig. 4.
Limitations of the Theory and Further Extensions

Clearly, if the drift-tube ends do not have the
squared-off shape, the Galerkin procedure is not applica-
ble, but the transfer matrix for the discontinuity can be
evaluated by the application of the SUPERFISH program.

As was pointed out above, the transmission line
representation of Fig. 2 is based on the assumption that
higher order modes excited at one junction decay
sufliciently by the time they reach the adjacent junction in
either direction. In some cases the gap length is not con-
sistent with this assumption, while the drift tube length
might be sufficient. In that case the transfer matrix for
the entire gap discontinuity, relative voltage, and current
in the coaxial waveguide on one side of the gap to the
voltage and current on the other side, should be used. If
both gaps and drift tubes are too short, more than one
transmission line may have to be used. In that case
discontinuitics have to he described by 4 x 4 or higher
order matrices.

The presence of stems and posts destroys the rota-
tional symmetry of the cavity. If coupling to asymmetrical
modes could be assumed to be unimportant, than both of
these structures could be represented by shunt elements.

This was done for posts, for which the circuit is a
series resonant circuit. The resonant frequency depends
primarily on the length of the post, while the L/C ratio
depends on the post thickness.

Without tuning posts reducing the length of one end
section of a drift tube and correspondingly increasing the
length of the drift tube at the opposite end has little effect
on the resonant frequency, but it produces a substantial
ramp gradient. This gradient can be climinated by tuning
the shunt resonant circuits to a frequency about 19 below
the original cavity resonance. More extensive studies of
the sensitivity of the gap voltage distribution to end drift
tube lengths were made using not the exact scatlering
matrix of the discontinuity but one for a series capacitance
which differs from the exact matrix by about 109 Gap
voltage distributions for a 30 drift tube linac are shown on
Fig. 5. These results are consistent with similar results
obtained experimentally at LANL. The ratio of maximum
to minimum gap voltage vs. post coupler resonant fre-
quency is shown on Fig. 6.

Further work on improving and gencralizing the cas-
caded transmission line model is continuing.
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All full length drift tubes 0.0852 m. long.
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