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Atstract 
Tile structure of a D T linac is regarded as a tandem 

arrangement of sections of coaxial waveguide and circular 
waveguide. If these sections are long enough. the dom­
inant mode is suffiCient to represent propagation in eacll 
section. Thus the representation of the structure is 
reduced to a succession of transmission line segments 
connectecj by equivalent networks of the coaxial line­
circular waveguide Junctions. This equivalent network was 
calculated by the Galerkin procedure. This computation is 
the main CPU-time intensive ingredient of the theory and 
it is easily done on a PC. The complete calculation of 
Deld distribution and resonant frequency for a 30 drift 
tube linac takes about Dve minutes on a VAX. The tilt 
resulling from a perturbation of the end sections of the 
linac is e:lsily calculated directly from the dimensions of 
the structure. For a uniform structure the agreement with 
results obtained by using the SUPERFISII program was 
excellent. One can incorporate into tllis model a represen­
tation of a post coupler a.s a series resonant circuit con­
nected across the transmission line, with the two parame­
ters determined by the length emd thickness of the post. 
Numcrical experiments show that the post coupler should 
be tuned below tile cavity resonant freQuency for stabiliza-
lion. 

Introduction 
The D T Linac cavity consists of a long pipe in which 

a number of drift tubes are coaxially located as shown in 
Fig. 1. Neglecting for the moment the elIect of the feed 
ports we see that the structure is a tandem arrangement of 
sections of Circular and coaxial waveguides. The beam 
apertllre~ Ctre llsllCtlly small enough compared to 
\\'avclength that tileir clIect on field distribution can be 
neglccted. If botl! the drift tube lengtlls and gaps are 
sufficiently long. the cavity can be represented by a series 
of cascaded transmission lines representing dominant 
mode propagation in the two waveguides joined through 
two-ports rc presenting the Junction of circular and coaxial 
waveguides (see Fig. 2). 

Tile voltage-current transfer matrix of the Junction is 
obtained from the scattering matrix. which in turn. is 
obtCtined by the Galerkin procedure. 

The resonant frequency is calculated by recognizing 
that tile voltage at tile end of the cavity is zero. while the 
current can be set to an arbitrary value; this two-vector is 
then Illultiplied by eacll successive 2 x 2 transfer matriX 
until the oppOSite end of the cavity is reached; since the 
voltage at this end must also be zero. freQuency is varied 
until this condition is satisDed. The dominant mode 
voltage distribution is then cllecl,ed to identify the cavity 
mode. 

Once the resonant freQuency is found. the field distri­
IlUtion can be obtained. The clominant waveguide mode 
contributions arc obtained directly from the voltages and 
currcnL'l prcviously calculated at each interface. In order 
to calculate higher order mode contributions. first the 
incident dominant mode wave amplitudes. from both 
sides, onto a Junction are calculated from voltage and 
('111'1'(' lll; tbe n, using the scatte ring coe ill cie nts 0 btaine d in 
tile solution of the coaXial-circular waveguide discon­
tinuity problcm. tile amplitudes of all lligher order modes 
excited at cach Junction are calculated. Once the field dis­
tribution is known. stored energy in the cavity and wall 

losses can be calculated. 

The Discontinuity Problem 

The transverse part oj' the electromagnetic field in a 
homogeneously filled waveguide of uniform cross-section 
can be expressed in a modal series 

E4,(x.y.z) ( 1) 
n 

:E1n(z) hn(x.y) , (2) 
n 

when J:n and h n are vector mode functions for electriC and 
magnetic fields for the nth mode. while Vn and In are vol­
tage and current satisfying transmission line eQuations. In 
tile case under consideration. only angularly independent 
TIv1 modes are involved. In circular waveguide the mode 
functions are 

J:n = - 1:o7r-l/2Jl(Xnr/a)/aJl(Xn) • n = 1.2 .... , (3) 

where Xn is the nth root of Jo(x) = O. Similarly. for the 
coaxial waveguide. the mode numbers Xm are the roots of 
ZoCxma/b). where 

Jo(;Xmr/b)No(Xm - No(Xmr/b)Jo(Xm) 

[J;(Xm)/J;(aXm/b) - 1 y/2 
(4) 

and tile mode functions are 

~m = - 1:0 XmZ 6(Xmr/b)/b • m = 1.2.3.... (5a) 

in addition to the TEM mode. for which 

~ = f.(27rQn(a/b))-1/2/r . (5b) 

Tile propagation constants of these modes are given by 

"In = J(xn/a)2 - (W/C)2 and im = J(Xm/b)2 - (W/C)2 • 

where w is the angular frequency and c is the velocity of 
light in free space. Tile wave impedance is given in both 
cases by ("I /JWEo)' Due to the choice of normalization 
electric and magnetic mode functions are related by 
h = Zo x J:. 

Tile Galerkin procedure used Ilere to solve the 
discontinuity problem makes use of tile representation on 
both sides of the Junction and of tile continuity or tangen­
tial fields. For unit voltage incident wave. the transverse 
electric field is 

OJ 

& = J:l e-'/lz + :E J:nSlJ,ne/nz 
n=l 

(5) 

where SlJ n are 3.<; yet unknown scattering coeffiCients. 
The corres'ponding magnetic field is given by 

00 

-ZoXH.c=J:1Y1C-/lz- :E l:nYnSll,ne/nz (7) 
n=l 

where Y n is the modal wave admittance. Similarly. we 
have for the transmitted fields in the coaxial region 

OJ 

ELt = :E ~mS21,me Im
Z 

• (8) 
m=O 

OJ 

- b:,x!lt = :E ~m YmS21 me -
/mz (0) 

01=0 
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vVe will eliminate S1I,n and use S21,m as unknowns. Con­
tinuity of E.t at z= 0 yields, by equating Eq. (6) and Eq. 
(8), multiplying by ~ and integrating over the cross­
section, 

00 

E PmvS21,m,Pmv=J ~·fmda, (10) 
m=O 

the integral extending over the cross-section of the coaxial 
line. Equating !it from Eq. (7) and Eq. (9) at z= 0, multi­
plying by f/-, and integrating gives 

00 

S21,/-,Y/-, + E Pn/-,Sll,nYn + P1/-,(Sll,C1)Y1 = 0 .(11) 
n=2 

Substituting for Sll n from Eq. (10) and Interchanging the 
order of summation, we obtain 

S21,/-,Y/-, + E S21,m{ E YnPmnPn/-, } = 2Y1P 1/-, .(12) 
m=o{) n=l 

Since f1 can take on any value, Eq. (12) is an infinite set 
of linear equations in an infinite number of unknowns 
SZI,m: 

00 

E Am1'S21,m = B/-, ' (13) 
m=O 

00 

where Am/-' = Y/-,o~ + EYnPn/-,Pmn and 
n=l 

This infinite set can be truncated so that the maximum 
value of m is of the order of 10 and the sum Am/-' usually 
converges rapidly enough so that 20 terms give sufficient 
accuracy. Once S21 m have been calculated Sll n can be 
obtained from Eq. (io). ' 

For the case of incidence from the coaxial Side we 
proceed in similar fashion, using the modified refiection 
coeffiCients S22,m+Or~) 3.5 unknowns; we obtain for these a 
set of equations, with the sam~e matrix AmI" but with the 
inhomogeneous terms BI' = 2Yo o/: . 
The transmission coefficients in this case are 

00 

S12,n = E (S22,m+O~) P nm . 
m=O 

The integration in the scalar products can 
out explicitly and we obtain 

PoD = (2/Qna/b)I/2 Jo(Xob/a)IXoJI(xn) 

Porn 
2Xn Jo(xnb/a)1 [x~- x~a2/b2 J 

m ~ o. 
Resonance Condition 

( 14) 

be carried 

( 15a) 

( 15b) 

The discontinuity problem discussed above yielded 
the unnormalized scattering matrix for the junction, 
where only the dominant modes are retained. For circuit 
calculations either a transfer-scattering matrix or a 
voltage-current transfer matrix is needed. The latter, 
denoted by Twc ' was chosen to simplify the computer 
program, its elements are simply related to the elements 
of the scattering matrix. 

If the junction is reversed, with circular waveguide on 
the right, its voltage current transfer matrix Tcw is the 
inverse of Twc. We will denote by Tn the transfer matriX 
of the nth section of transmission line in the equivalent 
circuit. When n is odd, the transmission line is that for 
the dominant TMoI mode of the circular waveguide and 
when n is even, it is that for the TEM mode on the coax­
ial line. There are N coaxial sections (number of drift 
tubes) and N+ 1 Circular waveguide sections. 

The voltage at the right end of the structure is zero 
and the short-circuit current can be arbitrarily set to any 

convenient value 10 since eventually all fields have to be 
multiplied by a constant which will insure proper normali­
zation. The voltage and current at the left end terminals 
of the circuit shown in Fig. 1 are 

[~) = T 2N + 1 . Twc· Tcw·····T3·Twc·Tz·Tcw·TI .[~J 
Since all the transfer matrices are frequency-dependent, so 
is the terminal voltage V. Since, for cavity operation, this 
must be zero, we search for the resonant frequency fo 
such that V(fo) = o. 

Numerical Results 
The calculation of the scattering matrix of the discon­

tinuity typically took into account 10 modes in the coaxial 
waveguide and about double that number in circular 
waveguide. This ratio, which depends on the ratio of 
waveguide to drift-tube diameters, must be maintained in 
order to avoid relative convergence problems normally 
associated with the Galerkin mode-matching procedure. 
Results obtained were in very good agreement with those 
obtained using the SUPERFISH program. 

Field distributions obtained by the Galerkin method 
exhibit a behavior similar to the Gibbs' phenomenon (cf. 
Fig. 3). Hence no significance should be attached to 
values of fields calculated in the immediate vicinity of a 
junction. The more modes are taken into account, the 
narrower the region in Which this occurs. 

A sample field distribution for a ramp gradient linac 
is shown in Fig. 4. 

Limitations of the Theory and Further Extensions 
Clearly, if the drift-tube ends do not have the 

squared-off shape, the Galerkin procedure is not applica­
ble, but the transfer matrix for the discontinuity can be 
evaluated by the application of the SUPERFISH program. 

As was pointed out above, the transmission line 
representation of Fig. 2 is based on the assumption that 
higher order modes excited at one junction decay 
su1l1cicntIy by the time they reach the adjacent junction in 
either direction. In some cases the gap length is not con­
sistent with this 3.~sumption, while the drift tube length 
might be sufficient. In that case the transfer matriX for 
the entire gap discontinuity, relative voltage, and current 
in the coaXial waveguide on one side of the gap to the 
voltage and current on the other side, SllOUld be used. If 
both gaps and drift tubes are too short, more than one 
transmission line may have to be used. In that case 
discontinuities have to be described by 4 x 4 or higher 
order matrices. 

The presence of stems and posts destroys the rota­
tional symmetry of the cavity. If coupling to asymmetrical 
modes could be assumed to be unimportant, than both of 
these structures could be represented by shunt elements. 

This was done for posts, for which the circuit is a 
series resonant circuit. The resonant frequency depends 
primarily on the length of the post, while the L/C ratio 
depends on the post thickness. 

VVithout tuning posts redUCing the length of one end 
section of a drift tube and correspondingly incre3.~ing the 
length of the drift tube at the opposite end has little effect 
on the resonant frequency, but it produces a substantial 
ramp gradient. This gradient can be eliminated by tuning 
the shunt resonant circuits to a frequency about 1 % below 
the original cavity resonance. More extensive studies of 
the sensitivity of the gap voltage dist,ribution to end clrift 
tube IcngUls were made using not the exact scattering 
matrix of the discontinuity but one for a series cClpacitflncc 
which differs from the exact matrix by about 10<;::'; Gap 
voltage distributions for a 30 drift tube linac are shown on 
Fig. 5. These results are consistent with similar results 
obtained experimentally at LANL. The ratio of maximum 
to minim um gap voltage vs. post coupler resonant fre­
quency is shown on Fig. 5. 

Further work on improving ane! generalizing the Cf).S­

cacled transmission line model is continuing. 
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