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Introduction 

The short bunch lengths and the associated high frequen­
cies found in the latest designs of linear colliders, supercon­
ducting linacs, FEL drivers, damping rings, and synchrotron 
light sources have heightened the importance of understanding 
the high-frequency behavior of the interaction of an acceler­
ator beam with its environment. This parametric domain is 
at the limits of both the numerical and analytical tools which 
have been developed to date, and is beyond the operational 
base established by existing machines. The resulting uncer­
tainty in the coupling of a particle beam to vacuum chamber 
discontinuities has hindered evaluation of bunch lengthening in 
storage rings and transverse beam blowup in linacs, and limits 
confidence in assessments of beam quality in proposed designs. 
Recent efforts by a number of researchers have addressed the 
asymptotic frequency behavior of the longitudinal and trans­
verse coupling impedance generated by discontinuities. Of par­
ticular interest is the transition from a slow rolloff, character­
istic of isolated structures, to a more rapid rolloff, characteris­
tic of an infinitely repeating structure. In addition, there has 
been significant progress in clarifying the implications of var­
ious length scales (wavenumber, radii, gap, total length, etc.) 
and geometries on the behavior of coupling impedances. An­
other high-frequency phenomenon, which is of particular con­
cern in damping and storage rings, is the synchrotron radia­
tion process in the presence of conductive boundaries. Ear­
lier estimates l have indicated that this effect can provide the 
dominant limit on peak beam current in small, smooth-walled 
machines. Newer results which take into account fully the com­
plex, finite-Q resonance structure present in a closed vacuum 
toroid have reinforced this concern. In this paper an overview 
is presented of the current understanding of impedances and 
wakefields well above the beam pipe cutoff. Implications of 
these results to beam dynamics issues are discussed, and a few 
remarks on remaining questions are offered. 

Basic Notions of Impedance and Wake Potential 

A charged particle beam passing a discontinuity in its 
vacuum chamber can deposit electromagnetic energy. Alter­
natively, a charged particle beam passing through a bending 
magnet can synchrotron radiate, again depositing energy. The 
source term in either case can be the macroscopic charge dis­
tribution of a bunched beam or the microscopic random cur­
rents at essentially arbitrarily high frequency (Schottky noise) 
of incipient beam instabilities. These beam-induced electro­
magnetic fields act on the beam and create a potentially un­
stable feedback loop which may limit beam current through 
instability and phase space dilution. The notions of wake po­
tential and coupling impedance provide a major tool in the 
analysis of these processes. Consider a charged particle beam 
passing down the center of a cylindrical beam pipe which has an 
isolated cavity-like structure. The longitudinal current I(z, t) 
will generate a longitudinal electric field Ez(z, t) which for a 
localized, time-independent structure will be of the form 

/ dz'dt' / dkdk'dw G(k,k',w)eikz-ik'z'-iw(t-t') I(z',t') (1) 

where G(k,k',w) is the Fourier-transformed Green function 
which must satisfy causality and relativistic locality. (In gen­
eral, there is an additional term describing the contribution of 
the charge density which will not be discussed here.) Although 
it is this Green function G(k,k',w) which enters into a com­
plete beam stability calculation, if the motion of the particles 
is well approximated by constant velocity trajectpries during 
transit through the localized structure, the simpler notions of 
impedance and wake potential provide sufficient information 
for a sound analysis. Consider a test charge moving at a con­
stant velocity v along a trajectory r = 0, z = -s + vt of the 
cylindrical beam pipe. The integrated longitudinal field W(s) 
seen by the test charge is 

A / (z + s ) W(s) = dzdt D -v- - t Ez(z, t) (2) 

On inserting Equation (1) into Equation (2) and integrating, 
we have 

W(s) = (21r)3 / dkdk' G(k, k', kv)i(k', kv)e- ik• (3) 

where ilk, w) is the Fourier transform of the longitudinal cur­
rent I. The time dependence of the beam current is generated 
both through the gross motion of the nonuniform spatial distri­
bution of charge in the beam and through changes in that dis­
tribution. For a quasistationary distribution of charge moving 
at a velocity v-that is, when the transit time is short compared 
to the characterisitic time for changes in the distribution-the 
primary time dependence will be given by I(z,t) = Io(z - vt). 
With this approximation 

I(k,w) = io (k)D(W - kv) (4) 

Inserting Equation (4) into Equation (3) yields 

W(s) = (~:( / dke- ik• G(k,k,kv)io(k) (5) 

The wake potential W(s) is defined by Equation (5) for a delta 
function exciting current; that is, 

W(s) = (~:( / dke- ik• G(k,k,kv) (6) 

The wake potential is the effective Green function for inter­
action with a vacuum chamber component in the quasistatic 
limit. The Fourier conjugate of the wake potential is the cou­
pling impedance, which is given by the relation 

(271")3 I 
Z(w) = -I-vl- G(k,k,kv) kv=w (7) 

A current I(w) yields a voltage 

V(w) = I(w)Z(w) (S) 

• This work was supported by the U.S. Department of En­
ergy under contract DE-AC05-S4ER40150. 
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when averaged over the structure in the quasistatic limit. Simi­
lar considerations are applicable for transverse coupling, where 
a transverse effective Green function (the transverse wake po­
tential) and conjugate impedance can be defined. 

Phenomena Driven by High-Frequency Impedances 

The impedances of a variety of particle accelerators have 
been found in practice to begin to roll off at frequencies of the 
order of the lowest waveguide cutoff, typically a few gigahertz. 
Thus the dominant current limits for an unbunched, contin­
uous beam, which can be excited in a very narrow frequency 
band, are dominated by antidamping modes of relatively low 
frequency content. The very short bunched beams found in a 
number of current accelerator designs, however, present a quite 
different picture. Consider the excitation of a localize structure 
by coherent internal oscillations of a bunch of rms length r. Be­
cause of the finite length, the frequency spectrum offered by an 
arbitrary perturbation of the bunch has width of 1/ (2 1l'T) and 
is centered about the typical frequency of the perturbation. For 
example, a I-mm bunch generates a corresponding frequency 
bandwidth of about 50 GHz. Therefore, any successful model 
of internal bunch stability for these short-bunch designs will in­
clude significant frequency smearing over a range where there is 
considerable variation in the coupling impedance and over fre­
quencies well above typical cutoff frequencies of a beam pipe. 

Internal bunch instabilities, both transverse and longitu­
dinal, have provided a fundamental limitation in the design of 
short-pulse-length synchrotron light sources, high-phase-space­
density damping rings, and single-pass FEL drivers. Although 
several formalisms have been developed to describe this class 
of beam instability, they share a common structure. 2 A set 
of basis states (possibly degenerate) is chosen which describe 
perturbations of the bunch phase space and current, with the 
higher states corresponding roughly to shorter wavelength in­
ternal ripples. For each mode there is an associated eigenfre­
quency. The impedance generates an additional interaction be­
tween the states, and the determination of stability reduces to 
an infinite dimensional eigenvalue problem. The fundamental 
matrix is formed from the unperturbed eigenfrequency spec­
trum and expectation values of the product of the impedance 
and beam current with the basis set. Since the basis set repre­
sents modes on a bunch of finite length r, the expectation values 
effectively average the impedance over a frequency range l/r. 
In general, reactive impedance can couple a basis mode to it­
self, yielding a frequency shift. On the other hand, resistive 
impedance provides the primary coupling between neighboring 
states and acts to induce instability. 

Determination of the threshold current for longitudinal 
and transverse instablity requires solution of an infinite dimen­
sional matrix eigenvalue problem. In practice, the matrix is 
truncated and certain general features which determine insta­
bility onset are observed. Heuristically, the off-diagonal matrix 
elements (through the resistive component) provide a poten­
tial growth rate; the reactive component yields frequency shifts 
which can either increase or decrease the eigenfrequency spac­
ing for basis states which are of the correct class to couple. In­
stability is observed (antidamping eigenfrequencies) when the 
potential growth rate exceeds the mode spacing. A large re­
active impedance (when averaged over the mode spectrum) 
can reduce mode spacing and allow a relatively small resis­
tive coupling to induce instability. As the current is increased 
the modes can cross and stability can be restored, yielding a 
stopband structure in current. Therefore, the threshold for 
this instability becomes a sensitive function of the average re-

active impedance. For short bunches this average is carried 
from the low-frequency inductive impedance through to the 
high-frequency capactive impedance of the tail, and estimates 
of stability can become extremely sensitive to both the assumed 
value of the transition (i.e., cutoff) frequency between inductive 
and capacitive behavior and the functional form in frequency 
of the high-frequency rolloff. Longitudinal impedance mod­
els invoking so-called "Spear scaling" (with an implicit w- O.7 

dependence) and a "Q = 1 resonator" (with an implicit w- 1 

dependence) have been widely used. As will be described later 
in more detail, recent efforts have centered about whether the 
high-frequency rolloff of the longitudinal coupling impedance is 
dominantly W- 1/ 2 or w- 3!2. For short bunches the choice of 
model can significantly affect stability estimates. Similarly, as­
sumptions with regard to the "cutoff" angular freq~ency where 
rolloff begins-for example, at c/ a or 2.4c / a (the TM cutoff in 
a circular pipe of radius a)-can yield either bunch lengthening 
or shortening in some parameter regimes. 

The maintenance of beam quality for the short, highly 
charged bunches found in proposed linear colliders,3 multipass 
superconducting beauty factories, and FEL drivers is a sec­
ond issue which is intimately tied to the high-frequency be­
havior of the transverse and longitudinal coupling impedances. 
Since the longitudinal wake potential is related to the coupling 
impedance by a Fourier transform, an W- 1!2 asymptotic form 
implies that the 8-function wake W(s) diverges at s = 0 as 
1/ Vs whereas an w- 3!2 dependence yields a finite limit. The 
functional dependence of the transverse wake varies as the inte­
gral of the longitudinal wake, which implies Sl!2 or s behavior, 
respectively, in the neighborhood of s = o. 

The longitudinal loss factor kt(a) is defined by the relation 

1+00 IT 
Q2kt = -00 dTI(r) -00 dtI(t)W(r - t) (9) 

and Q2 kt gives the total energy loss of a bunch of charge Q for a 
current distribution I describing a bunch of rms length a. For 
reasonable charge distributions, 2Qkt gives the approximate 
head-to-tail energy variation induced by the longitudinal wake. 
The transverse loss factor k t is defined by 

1+00 IT 
Q

2 kt = -00 dtI(r) -00 dtI(t)Wt(r - t) (10) 

where Wt(r) is the transverse wake potential and Qkt gives the 
average induced transverse kick. If w- 1!2 asymptotic beliavior 
as discussed above is assumed, then for a gaussian bunch of 
sufficiently small rms length a 

and 
1 a· 

If, on the other hand, w- 3!2 behavior is assumed, then 

kt ex constant 

and 

(11) 

(12) 

(13) 

(14) 

As is clear from Equations (11-14), extrapolations of mea­
surements performed with relatively long bunches or numerical 
estimates at the limits of computer capacity to shorter bunches 
can yield substantial differences which depend on the assumed 
asymptotic form of the high-frequency coupling impedance. 
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Design optimization can also be dramatically affected. Con­
sider, for example, the choice of bunch length in a linear col­
lider. If w- l / 2 behavior is realized, then exceedingly short 
bunches would appear unattractive since energy losses and 
bunch-induced energy spreads would be exacerbated (through 
Equation (11)) while transverse wakefields would be only mod­
estly reduced (through Equation (12)). On the other hand, if 
w-3 / 2 behavior is obtained, then transverse wakefields would 
be more strongly reduced with short bunch length (through 
Equation (14)) with little impact on energy loss and energy 
spread (Equation (13)). 

Earlier Results on High-Frequency Rolloff 

The study of the behavior of the longitudinal impedance 
at very high frequencies has a long history. Two models which 
have been used extensively are the diffraction model of Lawson4 

and the optical resonator model. 5 In the diffraction model the 
power lost by a charge traveling along a beam pipe which opens 
to form a resonator is estimated. For a relativistic particle the 
field looks very much like a plane wave, and the approxima­
tion is made that Fresnel diffraction of this wave occurs at the 
pipe edge. The energy that is diffracted outside the beam pipe 
radius is reflected at the far side of the resonator and is lost. 
The primary result is that the energy lOBI! of a point particle 
increases as 1 1/ 2. The relativistic distortion of the electric field 
to an opening angle 1/1 provides a high-frequency cutoff of or­
der C1 / a of the field spectrum of a point charge at the pipe 
radius a. Thus, the 1 1/ 2 dependence of the loss factor in the 
diffraction model translates into an w- l / 2 asymptotic behavior 
in frequency. 

The optical resonator model provides an alternative de­
scription of energy loss based on the work of Vainshtein.6 The 
analogy is drawn between a set of infinite plates with circular 
holes and the pair of circular mirrors with infinite reflections of 
the optical resonator. In this model, the energy loss for large 1 
is found to be independent of 1, and indicates that the asymp­
totic form of the impedance at high frequencies must be fast 
enough to yield convergent integrals. Detailed analysis of this 
model yields an asymptotic dependence of w-3 / 2 • 

Both models describe the energy loss mechanism in terms 
of diffraction; the fundamental distinction is that the Lawson 
diffraction model treats a single, isolated cavity, whereas the 
optical resonator model more immediately addresses a periodic 
array. Keil's7 work, which numerically evaluates the losses in 
an infinitely long sequence of accelerating cavities, suggests that 
the distinction drawn between single, isolated structures versus 
periodic structures is of particular significance. The work finds 
that the energy loss is strongly 1 dependent at low energies, but 
1 independent at high energies. Since as the energy is increased 
higher frequencies are generated, this result would indicate the 
validity of the optical resonator model for truly periodic struc­
tures. At lower energies, the frequency spectrum has not en­
tered the asymptotic regime, but appears to be consistent with 
the single-cavity Lawson model. The work of Hazeltine, Rosen­
bluth, and Sessler8 for the energy loss of a charged rod which 
moves at a constant speed past an infinite set of parallel semi­
infinite conducting plates shows an even more benign behavior 
for a periodic structure, with the energy loss ultimately falling 
with increasing 1. However, the semi-infinite geometry itself 
reduces the dimensionality of the problem and may provide 
additional regularization of the beam-structure coupling. 

Recent Cavity Impedance Results 

In the last few years significant progress has been made in 
clarifying the asymptotic behavior of cavity impedances in the 
ultra-relativistic limit v = c. First, a variety of approaches have 
consistently shown that w- l / 2 is indeed the correct asymptotic 
behavior for an isolated cavity. Second, it has been demon­
strated that the w-3 / 2 behavior characteristic of the optical res­
onator model is appropriate for an infinitely periodic structure, 
and furthermore, that this rolloffis exhibited in finite structures 
which are longer than some frequency-dependent scale length. 
Results for an isolated pillbox cavity have been obtained by 
Dome,9 Heifets and Kheifets,lO Bane and Sands,l1 Henke,12 
Palmer,13 and Gluckstern. 14 Palmer's model suggests a length 
Bcale for changeover from single-cell to infinite-cell behavior. 
The more rigorous analyses of Heifets and Kheifets 15 and of 
Gluckstern 16 indeed show such a transition. 

Dome's model is based on the assumption that, for a pill­
box cavity with beam pipe of radius a, the field pattern within 
the cavity at radii greater than a are undistorted from the 
closed-cavity solutions. With this approximation and summa­
tion over modes with appropriate time delays, he obtains an 
w- l

/
2 behavior and expressions for the complex longitudinal 

and transverse impedances. The work of Heifets and Kheifets 
provides an iterative solution of Maxwell's equations for a pill­
box with beam pipe. The leading term agrees with the result of 
Dome for the real part of the longitudinal coupling impedance. 
In addition, it is shown that the next term in the expansion 
is "small" with respect to the leading term. Thus, although 
convergence is not assured, there is evidence that the itera­
tion is well behaved. Bane and Sands have investigated the 
high-frequency behavior using Weiland's TBCI and have com­
pared these results with their version of the Lawson diffraction 
model. For short bunches the TBCI computations are found 
to approach the predictions of this model, and are therefore 
consistent with w- l / 2 rolloff. In the work of Henke, the field 
problem is solved with a mode-matching technique. It is found 
from numerical solution that the longitudinal impedance for a 
radial line behaves as w- l / 2. Gluckstern follows Henke's mode­
matching technique but extracts analytic results on w- l / 2 be­
havior for a single pillbox cavity through large-frequency esti­
mates of kernels of Maxwell's equations. The complex longi­
tudinal coupling impedance found agrees with that derived by 
Dome and is given by the expression (k = w/c) 

Z(k) = ~ 
27rka 

1 = Zo (~) (~)~ 
l-i ~ 27r~ 7ra 

2 V kg 

(15) 

kl = Zoc f[; 
27r 2 a V ~ (16) 

The analogous longitudinal couplings for dipole and higher 
modes, which are excited by offset beams, have been found 
to exhibit (up to constants) the same behavior. l7 ,lB Of course, 
iterative methods may not converge, and truncation of matri­
ces and finite mesh size may introduce spurious behavior, but 
the preponderance of evidence points to an asymptotic rolloff 
of w- l / 2 for an isolated single cell. A rigorous result, without 
approximation, for some closed geometry with beam pipe, un­
fortunately, has yet to be achieved. Palumbo, however, does 
give an analytic solution for a single step which shows a rolloff 
that is even slower than w- l / 2 • 

The nature of the transition between single-cell and peri­
odic behavior is most clearly exhibited in the work of Heifets 
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and Kheifets. Again following an iterative procedure, they de­
duce a general expression for the real part of the average lon­
gitudinal impedance per cell as a function of k = w / c for a 
structure composed of M cells spaced by L with gap 9 and 
outer radius b, and connected by beam pipes of radius a. Im­
plicit in this estimate is that ka ~ 1, L ~ g, k(b - a)2 /g ~ 1, 
and, of course, k « 1/ a. 

For large M they find that the average impedance is well 
represented by 

(Re~) = 2Zo• (2L) 2 § ~(k,M) (17) 
M (ka), rra Vg 

where ~ is a well-defined function of k, g, M, and L. 

In the limit M -> 00 

and, therefore, 

2rr L 
~(k,oo) = 1-~~ 

ay'rrkg 
(18) 

(Re~) = 2Zo• (2L) 2 . § + 0(k-2) (19) 
M (ka), rra V 9 

Thus, for large k, w- 3 / 2 behavior is exhibited by the real part 
of the longitudinal impedance. Note, however, that the O(k- 2 ) 

term requires (with L ~ g) that ka2 / L ~ 1. Gluckstern has 
also analyzed the infinitely periodic system and has found that 
for ka ~ 1 the longitudinal impedance is given by 

Z(k)=~ 
2rrka 

1 
(20) 

For ka2 / L ~ 1, this expression reduces to 

Z(k) ~ ~ + (1 - i)L2 ~ 
rrka2 rrka 3 V kg 

(21) 

with the real part of the impedance agreeing with that deter­
mined by Heifets and Kheifets, and the imaginary part offering 
a leading w -1 term. Such a term appears to be demanded by 
causality through a dispersion relation which links the real and 
imaginary parts of the coupling impedance. The next term in 
the expansion of the real part agrees with the O(k- 2 ) of Heifets 
and Kheifets. Note that for small k, single-cavity values are ob­
tained. This behavior is suggestive of Keil's low-energy results 
discussed previously. It is clear on comparing equations (20) 
and (21) that the magnitude of the longitudinal impedance is 
reduced in the infinitely periodic system from that obtained for 
a single cavity. 

For a large but finite number of cells M, Heifets and 
Kheifets find that for 1 « (ka2 / L) « M2/3, the system again 
behaves as an infinite system and is well approximated by the 
k-3 / 2 term. However, when ka2 / L ~ M, the single-cavity 
result with k- 1/ 2 behavior is reproduced. It is argued that 
at high frequencies the dominant longitudinal wavenumber kll 
and normalized frequency k become more nearly equal; i.e., 
kll - k ~ (ka2) -1. Hence, if the structure satisfies M L « ka2, 
there will be insufficient phase shift for interference among cav­
ities to be of importance in reducing the beam coupling. Fol­
lowing Palmer, consider a bunch of length w passing along the 
center of a beam pipe of radius a with interspersed discontinu­
ities. These discontinuities will cause distortion of the bunch 

field. Equilibrium is reached when this disturbance (initially 
due to fields at the head of the bunch) overtakes the tail of 
the bunch. This distance is of the order a2 /w. Since the spec­
tral content of this bunch is of the order k ~ l/w, this length 
scale matches that found by Heifets and Kheifets. In the limit 
M -> 00 the k- 1/ 2 region moves out to infinity, leaving the 
k- 3 / 2 asymptotic form. Palmer also argues that the Mth cav­
ity of a chain has its loss factor reduced by a factor 2/ (1 + v'M) 
from that of a single cavity until the equilibrium state of loss 
is reached. 

From Equation (20), single-cavity behavior is also found 
for (ka 2 )/L « 1. In this case, the interference length is less 
than the length of a single cell. Clearly, for sufficiently small 
k the basic approximations fail, and one enters the regime of 
isolated resonances. The interval M 2 / 3 « (ka 2 / L) « M, as 
well as the "spaces" represented by "«", are transition regions 
which required detailed evaluation of~. 

In summary, a multitude of length scales appears in this 
problem: k- 1 , total length, aperture radius, cavity radius, cell 
length, and cell gap-all of which may be involved in the deter­
mination of asymptotic behavior. As noted earlier, the results 
discussed above apply when ka ~ 1, L ~ g, k(b - a)2 / 9 ~ 1. 
In this regime ka2 / L appears as the primary scaling variable. 
For a structure of M cells, the average longitudinal impedance 
is well approximated in functional form by that of a single cell 
for (ka 2 /L) « 1 and for (ka2/L) ~ M. In the intermediate 
regime 1 « (ka 2 / L) « M 2/ 3 the coupling resembles that of an 
infinitely periodic structure in form and magnitude. 

Step Transitions 

When k(a - b)2 /g « 1, the above approximations fail, and 
a new asymptotic regime, the step, is entered. The longitudi­
nal loss factor for a step has been discussed by a number of 
researchers. 19,20,21 Significantly, a closed-form expression has 
been derived by Palumbo. The longitudinal impedance in the 
limit 9 -> 00 is asymptotically constant. For an up-step (from 
a smaller to larger pipe) the constant corresponds to a loss. In 
this case the loss factor is inversely proportional to the bunch 
length. For a down-step (from a larger pipe to a smaller pipe) 
the constant is zero, but the low-frequency impedance implies 
acceleration of the bunch. Presumably, this energy is derived 
from the field energy between the inner and outer radii. Note 
that step wakefields and losses, in contrast to cavities with 
equal-radii beam pipes,22 are not symmetric with respect to 
beam direction. The work of Chan and Schweinfurth2..3 us­
ing TBCI confirms this picture. Since their main concern is 
induced energy spread in small-aperture wigglers, they investi­
gated separately the down-step and up-step cases. It should be 
noted that the notion of impedance with its implicit integra­
tion from -00 to +00 is inadequate to the task of evaluating 
wiggler performance. In general, they find that the bunch gains 
energy when it enters a down-step and that the energy spread 
and gain increase with smaller (more gradual transition) ta­
per angles. On the other hand, the bunch loses energy when 
it enters an up-step, and the energy spread and loss increase 
with larger (more rapid transition) taper angles. Again using 
TBCI, Bisognano, Heifets and Yunn24 have studied the depen­
dence of the loss factor on bunch length (7 and taper angle of 
a combined up-step / down-step transition (a long cavity). For 
(b - a)2 /(ag) « 1 they find a a-I dependence, consistent with 
the analytic results. Tapering is found to decrease the longitu­
dinalloss factor, but this improvement is significantly degraded 
for shorter bunch lengths. 
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Synchrotron Radiation Impedance 

For small storage rings there appears to be another impor­
tant source of interaction of the beam with its environment­
the synchrotron radiation process. The effect of synchrotron 
radiation in a bend of radius p and angle 0 may be expressed 
in terms of a machine impedance of magnitude25 

(np) l ( 0 ) IZ(n)1 = 354 Ii 21T ohms (22) 

at harmonic n relative to the machine circumference 21T R. How­
ever, the synchrotron radiation in the bend magnets is sup­
pressed at frequencies below a cutoff value many times the TM 
mode cutoff. For a "vacuum" chamber consisting of two infinite 
parallel plates separated by 2h, the synchrotron radiation will 
be fully unshielded only for harmonics n satisfying 

R (1TP)! n> - -
p 2h 

(23) 

The peak value of the resistive component of the coupling 
impedance is found to be well approximated by26 

Re( Z(n)) ~ 300~n (24) 

For small machines (radius less than 100 meters) this effect 
apparently can provide the dominant source of high-frequency 
impedance. Random currents (Schottky noise) which exist at 
arbitrarily high frequecies on a bunched beam can in princi­
ple self-couple through this mechanism and generate internal 

bunch instabilities. However, the parallel plate geometry for 
which Equation (22) and Equation (23) apply is open and does 
not exhibit the full resonant structure that would be found in a 
closed, toroidal vacuum chamber. Thus, although it can be ex­
pected that Equation (24) holds in some averaged sense, there 
has been a need to clarify the resonance structure including 
widths. This analysis has been carried out by Warnock and 
Morton,27 and also Ng. 2B For a ring of 6-meter radius and 2-
centimeter full aperture, a resonant peak of over 30 n and a 
gigahertz width is found. The estimate from Equation (24) of 
0.5 n indicates that resonant enhancement is significant. It 
should be noted that application of the longitudinal impedance 
found should not be naively applied to standard bunch length­
ening formulas since the frequency, phase, and spatial character 
of the synchrotron radiation impedance is quite different from 
that which has generated instabilities in existing rings, which 
are less smooth than those that are now being proposed. In 
particular, the resonance condition is sensitive to the horizon­
tal position, and only a fraction of a typical storage ring beam 
may act coherently. 

Open Issues 

Although the recent results reported in this paper indicate 
strongly that the longitudinal impedance of an isolated cavity­
like structure has an w- I / 2 rolloff, and a periodic structure has 
an w- 3

/ 2 rolloff, a rigorous proof has yet to be achieved. Finite­
length systems as presented by this isolated cavity problem or 
by bunched-beam stability analysis have proven intractable in 
the exact sense, with most work relying on truncation of an 
essentially infinite dimensional problem. Any progress in this 
area would not only yield possible confirmation of the various 
approximate results, but would offer a powerful tool to address 
a variety of accelerator beam dynamics questions. 

For structures with L ~ g, ka2 provides the length scale 
for transition between isolated and periodic limits. However, 
the detailed nature of the transition needs further attention. 
For a repeating structure, the cells have been assumed identi­
cal, and the question remains whether imperfections may de­
grade the cavity-to-cavity interference which reduces the cou­
pling impedance in a long structure. For g «;:: L, the situation 
is less clear2B and further work is necessary. A related, un­
resolved issue is the rolloff of an isolated structure in a ring. 
The effect of tapering on reducing the beam coupling to vac­
uum chamber discontinuities has been addressed numerically, 
but finer mesh work is required. To date there have been no 
clear analytic results on the scaling of the impedance reduction 
offered by tapering with bunch length and taper angle. 

The results of Warnock and Morton and of Ng clearly in­
dicate that in a closed geometry there is a self-interaction of 
the beam through the synchrotron radiation process which is 
not of negligible strength. In fact, the impedance values esti­
mated demand further study to ensure that the phase space 
densities desired in [)(,tll damping rings for linear colliders and 
high-brightness synchrotron light sources are obtained. This 
work should include both theoretical beam dynamics calcula­
tions and experiments on small electron storage rings. Unfor­
tunately, the combination of discontinuity cleanliness and small 
radius required to observe synchrotron-radiation-induced insta­
bility may be hard to find in the older generation of machines, 
and a small experimental machine dedicated to this study may 
be needed. Such a device would also be of use in evaluating 
component impedances (cavities, bellows, steps, slotted vac­
uum chambers) at frequencies too high for confident wire or 
bead pull measurements. 
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