
BEAM PHENOMENA AT THE INTERACTION POINT 

KAORU YOKOYA 

National Laboratory for High Energy Physics 
Oho-machi, Tsukuba-gun, Ibaraki-ken, 305, Japan 

Introduction 

Two major issues of the beam-beam phenomena in lin
ear collit;lers are the deformation of the bunch (disrup
tion) and t.he synchrotron radiation (beamstrahlung) due 
to the field created by the on-corning beam. In this note 
we shall report some results of the study on these prob
lems with an emphasis on flat beams. 

These problems can be studied in two separate steps: 
first the disruption and then the beams-trahlung. The 
energy loss due to the beamstrahlung may change the 
process of the luminosity enhancement but this effect can 
be ignored since we are only interested in the case when 
the average energy loss is small. The following topics will 
be discussed in this report. 

1. pinch enhancement of the luminosity. 
2. kink instability and luminosity reduction due to 

the displacement of the beam. 
3. disruption angle. 
4. energy spectrum of electron after collision. 
5. behavior of electrons with large energy loss. 

The notation in this paper is: 

Eo beam energy. 
'Y Eo in units of the rest mass. 
N number of particles in a bunch. 
O"x,y,z r. m. s. beam size. 
f3x,y beta function at the collision point. 
R = 0" x /0" y aspect ratio. Assume 0" x ~ 0" y' 

0: fine structure constant. 
r e classical electron radius. 
D - 2Nr.(J. d'sr t' pa t x(y) - l'(Jx(y)((Jx+(Jy) I up IOn rame er. 
Ax(y) = O"z / f3x(y) 
NI' average number of beamstralung photons 

per electron. 
~ (critical energy)/(initial energy) 
{j average relative energy loss. 

Loa = {~::~2 geometrical luminosity, Jrep being 
x y 

the repetition rate. 
La geometrical luminosity with the variation 

of beta taken into account. 
L luminosity with disruption. 

Th" computer simulation was done using the code ABEL 
(Analysis of Beam-beam Effects in Linear colliders) de
scribed in [1] but improved considerably since then. Some 

results given in this report are still preliminary. They will 
be refined in later papers but the qualitative feature will 
not change. 

Luminosity Enhancement 

Our primary interest is the enhancement of the lumi
nosity due to the pinch effect. The detail has been dis
cussed in [2] for round beams and will be given in [3] 
for flat beams. As was pointed out in [2], the luminosity 
is infinite if the initial beam is parallel and the compu
tation is perfectly accurate. This is because a parallel 
beam can be focused to a point. Thus, we introduced 
a parameter Ax(y) = O"z/f3x(y) which is proportional to 
the emittance for given beam size O"x(y). The computed 
enhancement factor H = L/ La for flat beams is plotted 
in Fig. 1 as a function of Dy and Ay. Here, we used 

FLAT BEA:-[ H(DY,AY) AY=SIGZ/BETAY 

2.5 

c 
...l 

2.0 '> 
~ Ii 

1.5 

DY 

Figure 1: Luminosity enhancement factor for flat beams. 

the distribution function uniform in x and Gaussian in 
y and z (UGG), instead of three-dimensional Gaussian 
distribution (GGG), for easiness of computation. The 
enhancement factor of GGG distribution for given Dy is 
a superposition of UGG for the disruption parameter be
tween a and ~ Dy . The enhancement factor for round 
beams is shown in Fig. 2. 

In both cases, H is monotonically increasing as a func
tion of D (or Dy) at least up to D = 100. This result is 
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Figure 2: Luminosity enhancement factor for round 
beams. 

qualitatively the same as that found by Fawley and Lee 
[4] but ill contradiction to Holebeek [5] and to Solyak [6]. 
Our simulation was done in the following manner. For the 
flat beam case, the collision has an exact up-down (+y 
and -V) symmetry. Any deviation from the symmetry 
comes from computation errors. In our code the initial 
condition is generated by random numbers, which sta
tistically causes an asymmetry of the order 1/~, Np 
being the number of macro particles. This asymmetry is 
enhanced during the collision due to the beam-beam force 
when the disruption parameter is large. To minimize 
the computing errors, the particle distribution function is 
symmetrized at every time step so that the beam-beam 
force has the up-down symmetry. In the round beam 
case, only the radial force is computed. This process 
eliminates the possible instability triggered by comput
ing errors. The actual beam has more or less asymmetry 
but our principle is that the asymmetry in the simulation 
should be introduced intentionally not by random errors 
so that we can know the relation between the degree of 
asymmetry and the luminosity reduction. The efffect of 
initial beam displacement will be discussed in the next 
section. 

By comparing Figs. 1 and 2 one finds that the enhance
ment factor for flatbeams is not close to the square root 
of that for round beam when D is large. (Empirically, 
about cubic root.) This is because the horizontal focus
ing can enhance the vertical pinch effect (and vice versa) 
in the round beam case. 

Kink Instability 

If one of the beam is displaced vertically by some rea
son, this offset triggers a vertical oscillation and, when D 
is large, the oscillation is enhanced by the beam-beam 
force. This phenomena is known as 'kink instability'. 
Fig. 3 shows an example. The bunch is sliced longitudi
nally and the vertical coordinate y of the center-of-mass of 
each slice (in units of (J'y) is plotted against the longitudi
Ilal coordill"t.~ S (in units of (J'z). Each graph corresponds 
t.o a diffprpnt t.ime t, which is written at the top-left cor
ncr ill units of (J'z/c (downwards from top-left). The ini-
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Figure 3: An example of kink instability. 

, 

tial offset is O. 2(J'y (full) and the disruption parameter is 
Dy =20. 

For uniform beam and small amplitude oscillation, one 
gets an equation of motion of fluid dynamics (flat beam 
version of the equation given in [7]; 

[a a] 2 at ± aS Y± = -w6(Y± - Y~), 

where Y± is the y coordinate of e+ and e- beams. The 
most unstable solution is 

[ 
. v'3 'iT 1 1 Y± = const. x exp ±l( TWOS - (6) + '2 wot (2) 

This solution is in reasonable agreement with Fig. 3 in 
various points such as the phase difference 'iT /3 between 
e- and e+, the growth rate and the standing wave nature. 

However, this instability is not always a harmful effect, 
because, in the initial phase of the instability, the beams 
attract each other, which prevents the otherwise rapid fall 
off of the luminosity for jarge initial offset. Fig. 4 shows 
the luminosity enhancement factor as a function of the 
offset 6.V (in units of (J' y) for various values of Dy. The 
dotted lme is the geometrical enhancement factor with
out beam-beam force which is written as exp (-6.;/4(J'~). 
vee distribution is used and Ay =0.2 for all. The 
up-down symmetry is not enforced except at the poiut 
6. y =0. 

One finds the best value of Dy is between 5 and 10 
in the sense that a high luminosity is kept up to large 
offsets. For these values of Dy, H is still above unity 
even at 6. y = 3(J' y' Above this region of Dy the beam 
breakup is serious and below this region the attraction is 
not strong enough. 

The same data as in Fig. 4 is plotted in Fig. 5 in a dif
ferent way where the horizontal axis is Dy and each curve 
corresponds to different 6. y . (The region of large Dy alld 
small 6. y is not very accurate because of the sensitivity 
to computing errors.) Now, one sees a saturation and de
crease of H as a function of Dy unless 6. y =0, as in thc 
simulation in [5] and [6]. For practical application it will 
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Figure 4: Luminosity reduction due to offset. Flat beams. 
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Figure 5: Luminosity reduction due to offset. Flat beams. 

be safer to adopt the curve for !J. y =0.2 or 0.4, instead of 
!J. y =0, as the enhancement factor of head-on collision. 

Fig. 6 shows the offset effect for round beams but it is 
still preliminary, for the large D region has not yet been 
investigated because it requires a very accurate compu
tation (and, therefore, long computing time and many 
macro particles). 

Disruption Angle 

The information of the final direction of the electron 
trajectory after collision is necessary for designing the in
teraction region, especially for the aperture of the final 
quadrupole magnets. If the disruption parameter is very 
small, the transverse location of a particle during collision 
is nearly constant. Then we can estimate the disruption 
angle Ox and Oy as functions of the initial transverse co
ordinates Xo and Yo. For very flat Gaussian beams we 
have 

Ox = _ fiiDx O'x Im [i ;+00 exp (-t
2
)dt ] (3) 

V'2 O'z 7r -00 xo/V2O'x - t - iO 
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Figure 6: Luminosity reduction due to offset. Round 
beams. 

(4) 

where the quantities in the square brackets can be ex
pressed by the complex error function w(xo/V2O'x) and 
the real error function Erf(yo/V2O'y). Here the emittance 
is ignored. One finds that the maximum and r. m. s. of 
the disruption angle is 

()x,max 
O'x 

(xo = 1.310'x) (5) 0.765Dx-
O'z 

Oy,max .;;TiDy O'y (xo = 0, Yo = (0) (6) 
O'z 

Gx,rm. V 7r/(6V3)Dx O'x 
O'z 

(7) 

Gy,rm. V7r/(~V3)Dy :: = Ox,rm. (8) 

(Rigorously speaking, for flat beams with large but finite 
R, By takes maximum near Yo ~ 0' x and then decreases 
but this is not important.) The distribution functions 
of Ox and Oy are shown in Fig. 7. the singularities at 
Gx = Bx,max and By = 0 are not so sharp like this for ac
tual beams because of the fmite emittance, various errors 
and the disruption but the qualitative difference between 
horizontal and vertical angles is still seen in the simula
tions for not small disruption parameters. 

We need a computer simulation for the vertical dis
ruption angle for finite D y . (We consider the case of 
small Dx only.) Fig. 8 shows the maximum(solid) and 
r .m.s.( dashed) vertical disruption angle normalised by 
DyO' /O'z. The four curves corrrspond to Ay = 0.1, 0.2, 
0.4, 0.8 respectively. The dependence on Ay is not so sig
nificant as in the enhancement factor except for small Dy 
region where the finite emittance appears as it is initially. 
(The distribution of initial 0' x, is cut at 2.5 standard de
viation. ) 

The simulation results can roughly be fitted by 

o C}CO'y Dy 
Y,rms ~ V 6y'3 O'z [1 + (0.5D y)5)1/6 (9) 
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Figure 7: Distribution of the disruption angle for small 
disruption parameters. Flat beam. 
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Figure 8: Maximum and r. m. s. vertical disruption angle. 
Flat beam. 

and By,max '" 2.5By,rnH' Here the contribution of the 
initial emittance (= AyO'y/O'z for By,rm.) is not included. 
The reason that the angle does not linearly increase as 
Dy is that the trajectory is bent back and oscillates when 
Dy is large. 

So far, the collision is assumed to be head-on. For flat 
beams, the disruption angle in the presense of vertical 
offset is also important in determining the aperture of the 
final quads. The deflection angle of the center-of-mass of 
the bunch can be written in the form 

10' 6. 
8 = - ---.JLD F(D -Y) 

Y 2a Y Y'a 
z Y 

(10) 

where t.he weak dependence on Ay is ignored. The func
t.ion F is given by [8] 

(11 ) 

for small D y . Fig. 9 shows F computed by simulations. 
UGG distribution is used here. 
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Figure 9: Center-of-mass deflection angle. Function 
F(Dy ,6.y/ay). 

Roughly speaking, the maximum disruption angle in" 
the presense of offsets is the sum of the center-of-mass 
deflection angle 8 y and the maximum angle in the ab
sense of offsets, By ,max' 

Energy Spectrum of Electron 

The energy spectrum is important in two points; the 
spread of the e+ e- center-of-mass energy is the main rea
son to avoid large energy loss collision and the electron 
with large energy loss may be bent by a large angle by 
the beam-beam force to cause a background. For the first 
point the spectrum near the initial energy is important 
and the low energy tail for the second point. 

The energy spectrum of radiation can be characterizecl 
by the parameter' 

~ = (critical energy) 
(initial energy) 

(12) 

where p is the instantaneous curvature radius. Its typical 
value during the collision is 

( 13) 

The average of ~ is a bit smaller than eq. (13) (by a 
factor about 2/3) but we adopt eq. (13) for the better 
description of the low energy electron tail which comes 
from bearnstrahlung with large ~. 

The number of emitted photollS per electron is 

(11) 

"The notation T = ~~ is used in literatures out in some cases 
comfused with ~. Our notation is after Sokolov and Ternov. 
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where Nc/ is the number of photons computed by the 
classical formula and Uo(O is the ratio of quantum
theoretical number of photons to classical. A simple for
mula for Uo is 

(
t) _ 1 - 0.598~ + 1.061~5/3 

Uo <, - 1 + 0.922e (0 ~ ~ < (0), (15) 

whose relative error is within 0.7 percent. 
We have developed an approximate formula for the 

energy spectrum of electrons after collision. The detail 
will be given in [9]. Here, we quote the results only. 
The distribution function 1/;(c) (c = E / Eo) normalized 
as J 1/;(c)dc = 1 can be written as 

1/;(c) ~ e- N
" [8(c - 1) + le=Ych(Nlyl/3)] (16) 

with 

h(x) 
1 lA+ioo 
-. exp (xp-l/3 + p)dp 
27rl A-ioo 

(.\ > 0) 

00 xn 

~ nl r(n/3) 
(17) 

and 
1 1 

y = -( - - 1) 
~l c 

N1 = 1 Nc/ + ~lY N. 
l+~lY 1+~lY" 

(18) 

(This formula does not exactly satisfy the normalization 
condition except for ~l --t 0 which leads to Nl = N,. = 
Nc/.) The function h( x) can be estimated very accurately 
by 

3 VXf3 X 3/4 
h(x) = {l; 1 + 0.53x-5/6 exp [4("3) ] [ ]

3/4 

(19) 

with the relat.ive error less than 2% for any x. Fig.l0 com
pares eq. (16) with t.he simulation results using the pa
rameters for CLIC[10] and those by R. Palmer[l1] (wave
length 17mm). (The parameters are summarized m Ta
hle.1.) The histogram is the simulation and the crosses 
are eq. (16). The agreement is excellent. 

The center-of-mass energy spectrum is approximately 
calculated by the following way using 1/;(c). The average 
energy spectrum of one of the beam during collision is 

(1/;(c)) = 11 dT1/;(c, T) (20) 

where 1/;(c, r) is given by 1/;(c) but with N-y and Nc/ re
placed by r N,. and r Nc/, respectively. Then the center
of-mass energy spectrum function w(x) (x = 5/4E5, 5 = 
center-of-mass energy squared) is 

11 / X) de 
w(x) = (1/;(c)) \ 1/;( -) -. 

x C C 
(21 ) 

This expression is compared with simulation in Fig. 11 
using the same parameter sets as in Fig. 10. 
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Figure 10: Electron energy spectrum for CLIC and 
Palmer's parameter sets. 

Deflection of Low Energy Particles 

The particles which lost a large fraction of its initial 
energy is of our concern because they may be bent by a 
large angle and cause backgrounds. Consider an electron 
which emitted a hard photon at some time during the 
collision and became of energy cEo (c <t: 1). The effective 
disruption for this particle becomes Dx / c and Dy / c. One 
might think that the eqs. (5) to (9) apply by replacing D 
by D / c. However, the collision of a single particle on a 
beam with the disruption parameter D / c is different from 
the collision between two beams with D/c, although the 
qualitative feature is the same; i.e., the disruption angle 
increases linearly in D for small D and more slowly for 
large D. 

A simulation was done by putting low energy test par
ticles during the middle of collision. The maximum dis
ruption angle for given c can be written very crudely as 

()max ~ ~ D/E. (E. <t: 1) 
CT z \.11 + (0.75D/c)4/3 

(22) 
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Table 1: Parameters used in the simulation 
CLIC Palmer's 

Eo 1 TeV 0.5 TeV 
N 5 x 109 8 X 109 

O'z 200pm 26pm 
O'x 60 nm 190 nm 
O'y 12 nm 1 nm 
fx 1.53x 10- 12 m 2.58x10- 12 m 

~x 
0.51x10- 12 m 0.0233x10- 12 m 

0.667 0.033 
Dy 3.333 6.27 
Ax 0.085 0.0002 
Ay 0.71 0.60 

* L/ Loa 1.84 1.61 

* 0 0.25 0.15 

* N, 3.0 1.33 
~1 1.48 3.43 

* L,,/L 2.17 0.31 

* Le-,/ L 1.32 0.53 
* quantities computed by simulations. 

where 1J = Dx(Dy) and 0' = O'x(O'y) for horizontal (verti
cal) angle. 

Now, the problem is how small [ we have to care. Since 
the number of photons N, for linear colliders in the near 
future is of order unity, the spectrum function 1jJ([) given 
in eq. (16) is always dominated by the factor e- y at the 
t.ail y?> 1 (in a logarithmic sense). Therefore, if we allow 
n particles among N to create backgrounds, the minimum 
[we have to care is approximately given by y = 10g(N/n) 
or 

[min = 1/ (1 + ~110g(N In)) . (23) 

We can compute the largest disruption angle by eq.(22). 
Since the dependence on n is only logarithmic, we may 
put n = 1. For example, [min = 0.03 (0.013), Bx,max = 
1.0 (10.) mrad and By,max = 0.4 (0.4) mrad for CLIC 
(Palmer's) parameter set. For CLIC parameter set Bx,max 
is considerably larger than the maximum crossing angle 
for negligible luminosity reduction, O'x/O'z = 0.3 mrad. 

In determining the vertical aperture of the final quads, 
the information of B ,max may not be enough, because 
vertical beam offset due to errors can cause larger deflec
tion angle. 
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