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Summa rv 

A comput~r program intended for the beam transport 

system design of an initial beam phase space with arbi­

trary configur?tion is developed and some practical 

examplos are worked out to show the application of the 

program. 

Introduction 

Measurements show that no practical beam phase 

space is a real ellipse as assumed by conventional beam 

transport theory. Recentlv the geometry of accelerator 

beam "hase space with an arbitrary configuration has 

been developed.
1

,Z Based on that geometry,a comput2r 

code.TRAC(Transport for Arbitrary Configuration),was 

designed for the transport of the beam ?hase space with 

dn ,rbitrary configuration. The program can step through 

the beam line calculating the properties of the beam 

and output the parameters and the layout of the beam 

line, the beam envelopes,as well as the beam phase 

spaces at whatever point requested in the beam line. 

Basic Theory I 

In the transport theory of charged partical beam,3 

for 3 beam of finite dimensions the representative 

points lie ~ithin a six-dimensional hypervolume in phase 

space. Consider its two dimensional prOjection
4
(x,x') 

and define the beam envelope ~f that cross section as
l 

E= :lax Ixl 

1. ~r~ns~ort of Centrosymmetric Polygonal Phase Space 

A centrosymmetric convex Zn-gonal phase space, 

defined by its n consecutive side lines x+bix'-ai=O , 

(i=1,Z, ... ,k, ... ,n) and transporting through a field 

defined by the transfer matrix M(Z)~II\Z) mlz(z)], 

E21 (z) mZZ(z) 

generates a beam envelope 

'",here solved from the equations 

mIZ(.r&/) 
mll(~ )=bk+l . 

.JJ.o# 

2. Transport of Centrosymmetric Smooth Convex Phase 

Space 

In the three-dimensional phase space (x
l

=x,x
2

=x' ,x3 
..:1P 

=--- ), a centrosymmetric smooth convex phase space is 
p 

defined by f(x
l

,x
2

,x
3

;a,b, ... )=O with its parameters a, 

b, ... and the transfer matrix M(z) is replaced by a 3X3 
. 2 

matrix. From the equations 

f(x
l

'x2 'x3 ;a,b •••. )=O 

m12 (z) i)f 

m
ll

(z)1X2 

one can solve x
1

,x
2

,x
3 

in terms of >1(z), a, t, ... 

x
1

= Sf(M(Z);a,b, ... ) 

x 2 = 5z (M ( z ) ; a , b , ... ) 

x3= !3 (M(z) ;a,b, ••. ) , 

giving the beam envelope 

E ( z ) = I mil ( z) It(~!( z ) ; a , b , ' .. ) +m 12 ( z) lz( M ( z ) ; a , b , .. ) 

+ m13 (z) ~JM(Z) ;a,b,···)1 

3. Transport of Beam Phase Space with Arbitrarv 

Configuration 

The beam envelope generated bv a beam phase 3p~ce 

with arbitrary configuration is identical with that 

generated by the equivalent centrosvmmetric convex beam 

phase space defined by the convex cover of the union of 

the given phase space and its svmmetric immage with 

respect to the origin of the phase space coordinates. 

Figure 1 gives an example of the equivalent centtosym­

metric convex beam phase space. 

Fig.l. Phase space with arbitrary configuration 

(OIGP~~~~Q7and its equivalent centrosymmetric con-

vex phase space (j)7jf(j7GFiD'@'@~?!J . 
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4.Various Transfer Matrix 

In a beam line. the transfer matrix M(z) can be re­

garded as an assembly matrix at Z in the N-th element 

of the system 

M(Z)=RN(Z-L'~N_I:IN_I)···R2(12)RI(11) 

where L=II·12· ... +1~_1 and li:s :he length of i-th ele­

ment(i=1.2 •... ). 

For the drift length IN,:he :ransfer matrix of the 

element is 

~ Z-L] 
R (Z-L)= 

N 0 1 

In the focusing plane of the quadrupole with length IN 

the matrix is 

r
OSk(Z_L) 

R (Z-L)= 
Nx 

-kSINk(Z-L) 

in the defocusing plane 

l
CHkCZ_L) 

RN (Z-Ll= 

. y kSHk(Z-L) 

~SINk(Z-L)] 

COSk(Z-L) 

'n the bending magnet ~ith uniform field. the matrices 

dre 

R (Z-L)=[I Ny 
o 

o 

""here ex • f are the bending angle and the radius of cur­

vature respectively. 

Program Performance 

1.Preprocessing 

Since this program demands the initial phase space 

to ~e cent-asymmetric convex, the beam phase space with 

arbitrary configuration must be replaced by its equiva­

lent centrosymmetric convex phase space with the unit 

mm-mrad(see the preceding section on Basic Theory). 

2.Input of the Initial Values 

The initial information, including the preprocessed 

initial beam phase space and the layout of the beam 

line. is input by the user to the file called INDAT. 

Owing to centrosymmetry, only the half coordinates data 

of the initial beam phase space are needed. The beam 

line can be composed of drift space. quadrupole, bending 

magnet with uniform field and any other element whose 

transfer matrix can be expressed as discrete values 

step by step along the beam line. 

3.0utput 

The beam envelopes and the beam phase spaces are 

printed by the output file OUDAT. If the program is 

executed on the graphical terminal one gets two figures 

in which the beam line, beam envelope and beam phase 

spaces are drawn in two planes (see Fig.2). In the 

figures the position and size of the elements in the 

beam line layout are specified by the input parameters 

with the letter 'F' for focusing quadrupole lens. '0' 

for defocusing quadrupole lens, 'B' for bending magnet 

and 'N' for the element with discrete values. At the 

bottom of the figure there are the beam phase spaces at 

the point requested in the beam line with XP,YP repre­

senting X',Y' respectively. 

XIMMI Fa 8 F 

~~~----------------------~~ 

X-plane 

Y-plane 

Fig.2. Beam envelopes of example I. 

Examples of Calculation 

Examlpe I: The initial beam phase space are the 

ellipse-parabaloids 
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Fig.2 shows their projections on X-X' plane and Y-Y' 

plane and the layout of beam line with the quadrupoles 
_1 

of strength k~2.J m and the bending magnet of bending 

angle (1=90' and radius of curvature f =1 m. 

Example 2: This example is intended to compare the 

difference between the two beam envelopes generated by 

the parallelogram phase space, defined by its two suc­

cessive vertexes (2.55,-2.45), (3.35,1.48) and its ins-

cribed 

r8 . 87 

L-o 64 

ellipse phase 

-0.6

J throu2h 
4.11 

space defined by its 6-matrix 

the same beam line. In Fig.J the 

solid line represents the beam envelope generated by 

the parallelogram phase space, while the dashed line 

the beam envelope 2enerated by its inscribed ellipse. 

It :s interesting to note from Fig.3 that there is an 

obvious difference between these two beam envelopes. 

The maxmum relative difference is as high as 25% and 

30% in Y plane and X plane respectively, and it shows 

that in X plane the waists of these two beam envelopes 

ctre not coincident in position, with the separation of 

'J.3m. 

F C F 

~
XP(MI!Al>I ~ \i'rrZ(MI 

, X(2MH) , i' 

, , 
X-plane 

Y-plane 

Fig.3. Comparison between the two beam envelopes 

of example 2. 
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