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ABSTRACT 

Computer codes are increasingly essential for the design of 
RF accelerating cavities and waveguides. The code URMEL-T 
uses a triangular mesh and the FIT discretisation method (11, 
(2(, i.e. a finite difference method. Going beyond the capability 
of the most highly developed codes, URMEL-T deals with cav­
ities of cylindrical or translation ally invariant symmetry and 
waveguides - each with arbitrary dielectric and/or permeable 
material insertions. The theory underlying the code transforms 
Maxwell's equations via difference equations into a linear alge­
braic eigenvalue problem which has to be solved for only a small 
number of lowest eigenvalues. The solution provides fields, 
eigenfrequencies (propagation constants for waveguides) .. nd 
the usu .. 1 quality factors, voltages and other shunt impedance­
related qu .. ntities. 

INTRODUCTION 

Cylindrical Cavities 

In cavities with cylindrical symmetry the electromagnetic fields are 
periodic in the azimuthal variable (<p) with period 2l1'. This fact and 
the harmonic time dependence of the fields allow their description by 
a Fourier series: 

F( r, <p, z, t) = L::=o Re 
{{ Er(r, z)er -t' £p(r, z)e-p + Ez(r, z)e.} e,m-p e'''!}, 

(1) 

with the complex magnitude E. = E. or il. and the unit vectors er , 

e",. ez in r.<p.z direction. Furthermore the materials are assumed loss 
free. i.e. f, JJ. are real and the conductivity is equal to zero. So we 
may write 

f!; =-VZosinwtE' . 
- ,-- -, 
H =yYo coswtH , 

with Zo =" JJ.'llfO, Yo =Vfo/JJ.o, c = l/yJJ.o<o, 
Then. with k = w/c, \1axwell's equations are given by 

curlH' = frkE', 
curiE' = JJ.rkH'. 

(2) 

(3) 

The azimuthal dependence e,m-p leads to several groups of modes: 

m = 0: "TE-" or "H-"modes with E = (0, E-p,O) 
m = 0: "TM-" or "E-" modes with H = (0, H-p, 0) (accelerating) 
m > 0: these so-called deflecting or transverse modes are excited 

by off-axis particles 

Waveguides 

In waveguides which do not change their characteristics in the z­
direction (cartesian coordinate) waves with pure exponential depen­
dence on z are proper solutions of Maxwell's equations. Consequently 
we may write for waves travelling in the negative z-direction 

F(x,y,z,t) = 
Re{ { Ez(x, y)ez + E~(x, y)ev + Ez(x, y)e.} e,{J· e'''!}, 

(4) 

with the complex magnitude E. = E. or il. and the cartesian unit 
vectors ez, ev, e.. With the substitution of equation ( 2) we again 
obtain equation ( 3) for Maxwell's equations. 

DISCRETIZATION 

Because of the cylindrical symmetry of the cavity (respectively the 
z-independence of the waveguide shape) the azimuthal dependence 
(or the z-dependence) of the fields can be taken out of the numeri­
cal computation (compare [1], [2),[3)) and a two dimensional grid is 
sufficient. 

The basic ideas of the FIT method have been transferred to a 
triangular mesh. This mesh has the advantage of approximating well 
the cavity or waveguide geometry even for elliptical or circular struc­
tures with relatively coarse grids. 

Allocation of the field components to the grid 

As a main idea of the FIT method two dual grids are used - one 
for the electric and one for the magnetic field components. Different 
components associated with one mesh point are allocated at different 
locations of the grid. The characteristic and the advantage of this al­
location is the preservation of the interrelation between the integrals 
over areas and the line integrals in Maxwell's equations and the con­
tinuity at material boundaries. Field components on the triangular 
mesh are denoted by F, the ones on the dual mesh by F 

For the triangular mesh we have to distinguish two cases: 

1. If all triangles of the mesh inside the cavity have angles less 
than or equal to lI' /2 we choose as the dual mesh lines the 
perpendicular bisectors of the sides (dual mesh G M )· 

2. If the automatic mesh generator cannot avoid triangles with 
an angle over lI' /2 the centres of mass are taken as the dual 
mesh points (dual mesh Gs). It should be noted that the field 
component F in this dual mesh is in general not perpendicular 
to the field component F on the triangular mesh. 

The triangular mesh (denoted as G) contains two kinds of tri­
angles alternating in the rows: one has the vertex on top while the 
other one is standing upright. One of each kind is associated to each 
mesh point k. 

~--"---i\ 

Figure 1 : Allocation of the field components 

Allowed material properties in the different grids 

As mentioned above, the permittivity and the permeability shall be 
real. For GM as the dual mesh materials may be inserted with JJ.r and 
fr varying from triangle to triangle and either E or H could be chosen 
for F. Only continuous components occur at the triangle boundaries, 
i.e. tangential E and normal B (respectively tangential H and normal 
D). 

Figure 2 : Eon G, B on GM. Figure 3 : H on G, D on G M , 
JJ. .. fr varying JJ.r, fr varying 
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If only the dual mesh G S can be used we have to place a restriction 
to assure the continuity of the field components: Only insertions 
with constant po. but varying f., or constant f. but varying 1-'. are 
allowed and F will be taken as shown in figures 4 and 5 so that all 
components are continuous. In figure 4 it is seen that (continuous) 
tangential E occurs at the triangle interfaces, and so f. can vary from 
triangle to triangle. However since on the dual mesh the magnetic 
field component is not normal to the interfaces, IJ. cannot vary from 
triangle to triangle. Similarly, in figure 5 it can be seen that, with 
H on the mesh G, IJ. can vary whereas f. cannot. The constants IJO 

and fa shown in figure 4 and 5 stand here in fact for constant IJ. or 
constant f. all over the cavity or waveguide. 

Figure 4 : E on G, Bon Gs, Figure 5 : H on G, D on Gs, 
IJ. constant, f. varying po. varying, £. constant 

Deflecting modes, m > 0 

\1axwell's equations ( 3) in integral form are solved for a chosen 
m > 0 in the following way, which is described in more detail in [41: 

• They are discretized on the triangular mesh G with Gs (respec­

tively G M ) for (F', F') = (E', B') or Ui', [Y). The boundary 
conditions are included in the discretization. 

• In the resulting equations all F'-components and the azimuthal 
F'-component F~ are eliminated by substitution leading to dif­
ference equations connecting each field component Fa, Fb , Fc 
with ten neighbours. 

The equations which are given for each mesh point n correspond in 
their matrix representation to a linear algebraic eigenvalue problem. 
Thus an eigenvalue problem 

(5) 

remains to be solved. Its eigenvalues are the squared wave numbers 
of the resonant frequencies (k = wi c) and the eigenvectors 

(6) 

giv~ the corresponding electric and magnetic fields (N = number of 
mesh points). Here an advantage of the FIT method becomes ob­
vious: This method solves a linear problem and does not need an 
estimation of the frequency sought. The 3N x 3N matrix of the 
eigenvalue problem is sparse with only a few off-diagonals. 

\1onopole modes, m = 0 

Here we have to distinguish the TEO- and TMO-modes. Maxwell's 
equations are solved for m=O as follows: 

• They are discretized on the tria~gular mesh with (F', F') 
(E', B') for TM-modes and (F', F') = (H', [Y) for TE-modes. 

• In the resulting equations all F'-co~ponents are eliminated . 

F~l and F~2 are the only non-zero F'-components. 
In this case the difference equations connect each field compo­
nent F~l and F~2 with three neighbours. 

As for m > 0 a linear eigenvalue problem ( 5) is to be solved. The 
eigenvectors are now 

(1) 

The 2N x 2N - matrix A is sparse, can be made symmetric and has 
only three off-diagonals. 

Waveguides and cavities of translational invariance 

The difference equations for the waveguide problem are similar to 
those for the deflecting modes. Instead of a certain azimuthal depen­
dence we have the longitudinal dependence 

E(x, y, AZ) = Eo(x, y)e i /3<l.z == Eo(x, y)(1 ..,.. li3Az) (8) 

with the propagation constant 13. The same is true for cavities that 
do not change their geometry in z-direction for 0 ~ z ~ L where L is 
the longitudinal length of the cavity. 

Again Maxwell's equations are written in integral form and_dis-

cretized in full analogy to the case of deflecting modes with (F', F') = 
(E', 8'). Then all B'- components and the longitudinal E'-component 
E. are eliminated The resulting linear algebraic eigenvalue prob­
lem has the squared propagation constants for a given frequency w 

as eigenvalues. 
This option of URMEL-T renders it possible to compute the func­

tional relationship between the frequency and the propagation con­
stant for e.g. dielectric loaded waveguides. 

EXAMPLES 

We will present calculations for several realistic cavities and wave­
guides with and without material insertions. 

Dielectric loaded cavity 

The computed frequency shift caused by a Teflon cylinder (dielectric 
constant f. = 2) inserted in a DORIS-cavity shows a good agreement 
with measured data i 51: 

Table I : Frequency shift by a small Teflon cylinder 
inserted in a DORIS-cavity (N=968) 

calculated measured calculated measured 
original original frequency frequency 

mode frequency frequency shift shift 
TMOlO 498.406 MHz 498.488 MHz 6.356 MHz 6.614 MHz 
TMOll 139.302 MHz 145.661 MHz 1.419 MHz 8.399 MHz 
TMllO 115.286 MHz 175.810 MHz 4.606 MHz 5.980 MHz 

The reuonable difference found is due to the slightly modified cavity 
shape taken for the URMEL-T calculation where the flanges are left 
out. 

Cavity loaded with a ferrite ring 

As example for permeable material insertions we choose a cavity with 
an inserted ring made of ferrite with IJ. = 1.5 and €. = 14.5. The 
figures show field-plots of the lowest dipole modes. 

It,! : i ' J 
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Figure 6 : Electric field at '" = 0 for the mode l-EE-l with f=411.11 
MHz. 
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Figure 1 : Magnetic field at '" = 0 for the mode l-EE-1. 
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Figure 8 Magnetic field at 'P = 7r /2 for the mode l-EE-2 with 
f=599.10 MHz. 

Waveguide 

Figure 9 shows a cut through the dielectric waveguide together with 
a triangular mesh. The corresponding transverse fields for the fun· 
damental mode with frequency 3 GHz are plotted in figure 10. 

f = J GHl vacuum 

Figure 9 Dielectric waveguide with mesh for the part which is es. 
sential for a run of URMElr T 

G" '------..., .... 
Figure 10: Field maps for the fundamental wave 

A inulti-cell cavity 

To simulate the influence of the beam pipe it is usual to tune the 
last cell of a multi-cell cavity. The triangular mesh is able to follow 
even very small deviations between the radii of the middle cells and 
the outer cell while a rectangular mesh needs a very fine mesh which 
causes a steeply increasing number of mesh points in rectangular grids 
the finer the radial deviation is. 

As illustration the tuned IGHz DESY nin~cell superconducting 
cavity is shown. The radius of the middle cells is 139.595 mm while 
the last cell has a radius of 138.345 mm. We show the cavity together 
with the triangular mesh of 1960 points and contours of r· H", = canst 
of the 7r mode. These lines show the direction of the electric field. 
Their density is proportional to r . E. 

Figure 11: Tuned DESY nine cell cavity with mesh used 

-----------=::::::::::::-
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Figure 12: Contours of constant r· H", for the 7r-mode of the tuned 
nine cell cavity. Measurements [61 with a slightly different cavity gave 
1000.1MHz as frequency, URMElrT calculated 1007.5 MHz. 

Figure 13 : Arrow plot of the electric field for the" TElll·27r /9" ·like 
mode. The measurements gave 1271.2 MHz as frequency, URMEI,. T 
calculated 1289.8 MHz. 
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Figure 14 : Arrow plot of the magnetic field for the" TEl11·2l1-j9"· 
like mode. 

SUMMARY 

The computer code URMEI,. T enlarges the two dimensional scope 
of application of the FIT discretization method in two directions: 

• First it allows the calculation of resonant modes (including the 
TEO-modes) in cylindrically or translationally symmetric cavi­
ties with dielectric and/or permeable insertions as well as the 
calculation of propagation constants in waveguides. Herewith 
URMElr T offers a new feature in the domain of computational 
evaluation of RF ·fields . 

• Second URMElr T is well suited to structures with elliptical 
or circular parts in their geometry, and for tuning multi-cell 
cavities. This is based on the properties of a triangular mesh 
combined with the powerful FIT method. The latter ensures 
that the solutions fulfill all Maxwell's equations, i.e. they are 
physically significant. 

So URMEI,.T presents a widely useful extension of the program 
group for the solution of Maxwell's equations. 
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