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Introduction

A recirculating electron accelerator based upon
superconducting cavities technology 1s envisaged in
different laboratories to produce a high duty cycle
beam with energy in the GeV region. In all the cases
the design current is in the 100 pyA range. Beam break
up is a severe limitation in this kind of accelerator
due to the positive feedback of the returning beams.
Therefore a careful analysis of the phenomenon must be
made to determine the permissible characteristics of
the superconducting cavities., Different analysis have
been made for recirculating beam breakup by Volodin
J], Herminghaus Bﬂ, Vetter Eﬁ, Lyneis Dﬂ and oth-
ers. We present here an analysis based upon feedback
system theory which takes into account the different
cavities of the linac, the optics of the linac and of
the recirculating path. The frequencies of the cavi-
ties may be the same or distributed in a random way.
We assume that the beam position do not vary when tra-
versing a cavity, and the bunch structure is ignored.
A computer program has been written which computes the
threshold current for a given configuration. The re-
sult can be checked with a simulation code which com-
putes the transverse motion of the bunches based upon
wake fields equations. An example 1is given for the
Saclay proposal of a 2 GeV accelerator consisting of
4 passes in a 500 MeV, 100 m—-long superconducting
linac.

Transverse coupling impedance of a cavity.

We start with the definition of transverse cou-
pling impedance for dipoles modes in a cavity given
by F.J. Sacherer Bﬂ
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giving the transverse force seen by a beam of current
Iy, traversing a cavity at a distance A from the axis,
k being the wave number. In analogy with the analy-
sis given by T. Suzuki Bﬂ for the longitudinal cou-
pling impedance, it can been shown |7]| that the trans-
verse impedance defined above takes the resonant form:
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wr being the frequency of the mode, Q the correspon-~

ding quality factor.
The impedance at resonance is given by
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Where P is the RF power dissipated in the walls.

A beam travelling at a distance y from the axis
receives a transverse kick given by
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which can be written
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The differential equation which describes the
beam-cavity interaction is then
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Feedback analysis of the stability.

A linac composed of N cavities 1is considered as
a system of N oscillators coupled by the beam, with a
feedback due to the recirculating paths. "n order to
know the evolution of this system for a small initial
perturbation, in analogy with the linear control sys-
tem theory Eﬂ, we define a system of a state vari-
ables xy(t) %n(t). The evolution of the system is
governed by the homogeneous equation

X = AX
A beling the state matrix nxn
x 1s the time derivative of the vector x

The differential equation (1) being of second order,
we need two state variables per cavity. For the cavi-
ty 1, the state variables are

Xpi-1 T AP

X, .
21 ApLi
The matrix A is them a 2N x 2N matrix. The trans-
verse position of the beam in the cavity i during pass
j is noted yl. We assume that the beam 1s injected on

axis : 1 1 )1

v, =V =0
1 -
The transverse momentum imparted to the beam in

cavity 1 1s given by equation (1) where we put

It is useful to transform the equations by using
a Laplace transformation. We note X(p) the transform
of x(t), x(0) being the 1initial conditions. For the
cavity i the equation (1) is equivalent to the system :

P X5 P — x4 (0 =%, (@)

w

) - = -? -
p X, .(p) XZi(O) (“rXZi—i(p) 3 Xzi(p) +a

21

o
<
et
—~
o
=

The 2N equations are summarized in

(pI - &) X(p) = x(0)

I being the unit matrix, A the statematrix previously
defined.
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The evolution of the system is then found by tak-
ing the inverse Laplace transform of

— -1
X(p) = [pI-4,  x(o)

The svstem 1is stable if the poles of X(p) have a
negative real part. These poles are the zeros of the
determinant of pI-A, i.e theyare the eigenvalues of the
matrix A.

The problem is then to find the matrix A and its
eigenvalues.

From the system (2) it is sgen that we need to
evaluate the Laplace transform YJ(p) of the beam posi-
tion yJ(t). The transfer matrix “from cavity i to cav-
ity i+1 during the pass j is known and depends on the
energy and the focusing scheme of the linac. The angu-
lar divergence at the exit of cavity i is given by
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pz being the longitudinal momentum. The optical
properties of the return path are summarized via a
transport matrix, and finally the transit time T; of
jth Lonplete loop from a point in the linac.back to it-
self is included in the Laplace transform Y viaa term

PTJ

The computer code for stability study computes the
elements of the matrix A for a given configuration of
the linac and of the return paths and for given char-~
acterlsc1cs of the deflecting modes 1in the cavities
(Ve Q, The eigenvalues of A are then computed by
succe5518e iterations since the elements of A contain
p. The limit for stability corresponds to the solution
with a nul real part

Pg = 39y

Application to a simple case

We consider the case where the linac 1is supposed
to be concentrated into one cavity and compute the
threshold current for two passes. In that case the ma-
trix A is
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Ri2 being the coefficient of the transfer matrix from
the cavity back to itself in TRANSPORT notation. P,

the longitudinal momentum at the exit of the cavity. %he
limit for stability 1is obtained for an eigenvaluep= Jw
The characteristic equation becomes
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The frequency at which instability occurs is given by
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civing a result similar to the one given by
Herminghaus Eﬂ

Application to a 2 GeV accelerator.

We apply our results to a possible scheme for a
2 GeV accelerator composed of 4 passes in a 500 MeV
linac. We take as an example the 1 GHz, nine-cell su-
perconducting cavity studied at DESY Bﬂ n assume
an electric field of 5 MeV/m. The linac is composed of
72 cavities in 18 groups of 4 units. The focusing uses
a FODO scheme with a spacing between quadrupoles of
10 m and constant gradient (corresponding to a focal
length of 5 m at 50 MeV). The harmonic number is 1403
and is the same for all turms, the transport matrix
for the recturn path is the unit matrix.

We study the effect of one of tlie dipole modes
given in Eﬂ whose frequency is 1.436 GHz. The shunt
impedance given by the code URMEL, computed at
d = 44.5 mm from the axis is R/Q = 38.5 2/m. The cou-
pling impedance used in equation (1) is given by

R
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L is the length of the cavity. For a group of 4%
cavities the impedance is

— = 1.75 10° Q/m
Q
We assume that the Q of that mode has been re-
duced to Q = 10%. As the frequency of the modes is not
known exactly, the BBU threshold shown in table ! for

2, 3 and 4 passes are the lowest values calculated

with the feedback theory, sweeping the frequency
around 1.436 GHz.
Table 1
I i
i I -
Energy (GeV) ‘ 1 : 1.3 2
Nb of passes i 2 3 +
! i
Threshold curremt (ua) | 299 . 205 115
| BBU frequency P 1043594 1 1.43600 0 1.432604

In the case of no focusing in the linac the currents
are respectively 84 pA, 33 puA and 17 pA for 2, 3, and
4 passes.

Stability study using a tracking code.

A tracking code has been written following the
formulations given by R. Glickstern :Hﬂ, but includ-
ing multipass effects. The focusing in the linac, and
the optics of the recirculating paths are included.

When a bunch of charge Q_ moves at a distance a
from the axis, the transverse integrated force seen by
a test charge following the bunch at a distance 1, is
given by

+ d/2

F dz = e a Q_ W(T)
ladn t b

l
where T = - W(T) is the transverse wake potential which

can be expressed as a Fourier-transform of the cou-
pling impedance
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For the case of a transverse resonant mode we ob-

tain :
w
- L 1
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1 L 2
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The transverse momentum imparted to the bunch n
passing in cavity 1 at time T is the sum of all the
wakes left by the bunches which passed at time between
0 and T.

In order to test the stability of the system com-
posed of N cavities coupled by the beam with several
passes, we apply a perturbation to the stable system
and look for the evolution of the free oscillations
(damping or growth). The perturbation may be a trans-
verse momentum imparted to the first bunch when it
passes 11 the first cavity. When the complete system
is described (cavities, transverse modes and optics)
the threshold current is found by iterations on the
charge Q, to find the limit of stability. This method
was testéd and gave the same threshold current than
the matrix method described in the first part. However
it should be noted that a very large number of bunches
must be tracked before steady-state is reached in the
case of high Q (superconducting case) and large accel-
erator, thus leading to impracticable computing times.
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