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Introduction 

It has long been recognized that recirculating 
a beam through a linac cavity in order to provide 
more efficient acceleration can also lead to an in­
stability in which the transverse displacement on 
successive recirculations can excite modes which 
further deflect the initial beam. The effect is of 
particular concern for superconducting rf cavities 
where the high Q (or order 10~) implies low starting 
currents for the instability. Previous work 1 ,2 has 
addressed this effect by calculating the beam tra­
jectory in a single cavity, and its effect on exci­
tation of unwanted modes. In this paper we extend 
the analysis of Gluckstern, Cooper and Channel 3 to 
the case of recirculation of a cw beam, and show how 
to compute the starting current for a multi-cavity 
structure with several recirculations. Each of the 
cavities is assumed to provide a simple impulse to 
the beam proportional to the transverse displacement 
in that cavity. 

Analysis for a Coasting Beam 

The difference equations for transverse dis­

~lacement and momentum on the pth traversal (p_l th 

recirculation), denoted by the two component vector 

up(n,M) for the Mth bunch at the entrace to the nth 
cavity, can be generalized from that for a single 
traversal to obtain 

up(n+l,M) = P up(n,M) 

J , M-l 
+ \' PG g ~ ur(n,M + (p-r) Mo - k) sk (w't). 

r=l k~l 

The notation is mostly that of Reference 3. In 
addition 

P 

G 

g R/y 

is the 2x2 transport matrix 
between cavity impulses 

(proportional to current, transverse 
impedance, etc.) 

number of bunches in one recirculation 

(1) 

(2) 

(3) 

(4) 

(5 ) 

(6) 

J = total number of passes (J-l recirculations) (7) 

We can obtain a steady state solution to Eq. 
( 1) of the form 

(8) 

where Q is the mode "frequency" of this solution. 
This leads to 

J 
v p (n+ 1) ~ d v p (n) + gG \' v r ( n) 1, (9) 

r=l 

where 

g Sk e-iQk = (R/2y) sin 
cos(Q - iw't/2Q) 

• (10) w't 
cos w"t' 

Our task is to solve Eq. (9), including the recircu­
lation transport, for Q as a function of current 
(R). Stability requires that all modes have 

ImQ ) 0 (11 ) 

Clearly the starting current (R) is that for which 
ImQ - 0 is first obtained as the current is 
increased from O. 

It is possible to solve Eq. (9) if P and g are 
independent of nand y. The solution is 

pn v (1) + rep + Jg PG)n - pnl 
p J 

J 
\' 

r=1 

where the order of factors 1s important since P and 
G do not commute. 

If we denote by L the transport matrix from the 

entrance to cavity N+l on the pth pass (N stands for 
the total number of cavities and N+l is the entrance 
to a fictitious cavity) to the entrance to the 1st 

cavity on the (p+l)st pass, we have, taking Eq. (8) 
into account, 

([3 ) 

This then allows us to write 

-iaM J 
e 0 IT vp(1) + S \' vr(l) 1, (14) 

r=l 

where the 1 pass recirculation matrix T, including 
phase shifts, is 

T = LPN " /QMo T 

and where 

S = L r (P + Jg PG)N 
J 

(L 5) 

pN iOMo 1 _ e S. (16 ) 

Once again, we can obtain a general solution to 
Eq. (14) if T and S are independent of the pass 
number. Specifically, one finds 

(1-1-) Wy 
J 
') 1-r - 1 S vI (l ) , (17) 

r=1 

where 

W = 1 - [J-l + (J-2) r + (J-3) r2 + ••• r J - 2 ]s, (18) 
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and whe~e the vecto~s x and yare defined by 

(9) 

It is clea~ that the normal mode solutions corres­
pond to the solutions of Eq. (17) with the ~ight 
side set equal to ze~o. The modes are the~efo~e 
dete~mined by the equation 

det W = 0, (ZO ) 

since the vanishing of det (1 - T) would co~respond 
to integral tune. The equivalent of Eq. (ZO) with 
varying Sand T on each pass can also be written out 
explicitly. It is 

det {I - 51 - (~;Z + .rZS1) 

"3 "3"Z "3"Z"1 
- (S + T S + T T S ) + ···1 = 0, (Z1) 

whe~e the supersc~ipt identifies the pass numbe~ for 

which the value of S or T is calculated. 

Each of the mat~ix elements in Eq. (ZO) or (Zl) 
is expected, because of Eq. (16), to be a polynomial 
in the beam current (g or R) of order~. Thus, Eq. 
(ZO) or (21) is expected to be an algebraic equation 
of orde~ ZN, barring cancellations, for R in terms 
of Q. Since the onset of instability occurs when 
both " and R ~re ~eal, the starting cu~rent will be 
the root with the smallest ~eal value of R fo~ ~eal 

<. If one resorts to nume~ical determination of the 
~oots, one needs to sweep over real values of Q 
unti lone finds roots for which R is real. 

Simple Cases 

Before exploring methods for computation in the 
most general case, we will consider cases with one 
or two cavities and several recirculations. 

One Cavity (Na 1) 

In this case, Eq. (16) leads to 

( 22) 

where we now permit Mo ' L, P and g to be different 
for each pass. Since 

A j 
S11 = gj 1-1z "j 

S12 = ° "j 
S21 = gj~Z "j 

SZ2 = 0, (Z3) 

we find from Eqs. (0) and (ZI) 

cos ('1 - iW"t/2g) - cos w, R (24) sin '.0, 2" K, 

,..there 

+ ••• ] + •••• (Z5) 

For RIKI « 1 one can write an approximate solution 
for Eq. (24) as 

Q = Zmn t (w, _ RK) + iw, 
2 2Q 

(Z6) 

The stability condition, ImQ ) 0 , then becomes 

R 
t 2" ImK 

+ (rJr2) 12 sin (Q(MZ + M3» + ···1 :;: ... < ~~ • (27) 

Stability can thus be guaranteed if 

(Z8) 

Equation (27) is in agreement with Vetter's result 2 

for single cavity recirculation. 

One Cavity with Storage Ring (N=l. J~) 

In this case we take Sand T to be constant and 
Ilrite S = gTG. In the limit J -> "'. the product gJ 
is finite and the~efore g -> O. This permits us to 
write Eq. (17) as 

det r(l - T) wl -> det 
r -i 0.:-\0 ... - gJTG 1 e . o (Z9) 

whose solution is 

cos(QMo ) JR sin - cos !J, = g 2: u. 

(JR8/4:x) sin w, 
cos( Q - iw,/ZQ) - cos w, (30 ) 

using the Courant Snyder representation of T, 

Z cos !J, = Ttl + TZZ T1Z = R sin u.. (31 ) 

Equation (29) agrees with earlier results on coupled 
bunch modes in' circular accelerators. 4 ,5 

Two Cavities, Two Passes (N=Z, J=Z) 

The complexity quickly escalates for two or 
more cavities. For two or more passes, the 
polynomial equation in R is of order N. 
Specifically, the equation for two cavities is 

with 

cos «(1 - iw,/ZQ) - cos '.0, 
R cos W"t 

K 
2" (3Z) 

where W = ~~o is the phase shift in one recircula­
tion, and where PSa is the lZ element of the trans-

port matrix from cavity a to cavity 8. The cavity 
deSignations are A and B on the first pass, and C 
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and D on the second pass. Once again, stability can 
be guaranteed if 

I I KI .; ~ m RQ (34) 

Since the precise deflecting mode frequency is not 
known, and since Mo is usually a large number, one 

needs to choose the value of ~ which maximizes 

I Im(K) I • -1 
If one assumes that the term in Y

A 
dominates in Eq. (33), this suggests choosing para­
meters such that PCA = O. However, the optimum 

choice of parameters will depend on the values of 
all the parameters in Eq. (33). 

For J > 2, the order of the equation for R is 
still N, but with many new parameters. Obviously 
some systematic approach is necessary for a 
situation like that at CEBAF 6 where Na 400, J=4. 

General Approach 

If we consider the vector wen) to have 2J 
components, each pair of which is vp(n) for p = 1,2, 
••• .1, Eq. (9) can be written as 

w(n+l) = An wen), 

where An is a 2Jx2J matrix whose elements are 
explicitly given in Eq. (9). Clearly 

(35 ) 

w(N+l) = B w(l) ,B = ANAN- 1 ••• AI. (36) 

Returning to the two component vector form, Eq. (36) 
can be written as 

J 
vp(N+l) = ) Bpr vr (I), (37) 

r=1 

where each Bpr is a 2x2 submatrix of Eq. (36). 

Using Eq. (13) we have 

p = 1,2, ••• .1-1. (38) 

Clearly the normal modes 2 are the roots of the 
(2J-2)x(2.1-2) determinant of the left side of Eq. 
(38), Le. 

= o. (39) 

This analysis also permits the use of different 
deflecting mode frequencies for each cavity.7 

This approach to determining the starting 
current is now being implemented for the CEBAF 
designS in order to explore the optimum choice of 
transport parameters. 

Simulations 

In a separate paper at this conferenceS 
Bisognano and Krafft report on numerical simulations 
for the CEBAF design. Specifically they solve Eq. 
(1) numerically and look for solutions which grow 
with increasing M. The maximum value of current for 
which the displacement remains bounded is the 
starting current for the instability. 

In order to obtain more accurate results, and 
to explore the dependence of the starting current on 
the many adjustable transport parameters, the method 
described in the preceding section is now being 
implemented. 

Summary 

The analysiS of Gluckstern, Cooper and Channell 
has been extended to a multi-cavity recirculating 
linac with J passes, and an equation derived for 0, 
the "frequency" of the "modes" of beam bunch 
oscillation. The results obtained for 1 cavity 
agree with those previously obtained. 2 Numerical 
work applicable to CEBAF is under way.8 
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