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Introduction 

The popular trend in today's design of ac
celerating columns is to make the field gradient 
near the extraction area as large as possible. 
The argument has been that if the proton beam en
ergy can be brought up to the accelerator injec
tion level in a very short distance, space charge 
has little time in which to act to increase the 
effective emittance by warping the emittance pat
tern. Support for this argument has come from the 
success of recently tested short columns in pro
ducing proton beams with low normalized emittances, 
in the region of 0.05 cm-milliradian. It is gen
erally accepted that only the extraction system of 
Pierce is without aberrations. TO emphasize these 
essential features of the Pierce extraction--co
axial flow, zero angular momentum, and a uniform 
density distribution--a derivation based on a zero 
effective emittance pattern throughout the accel
eration is presented. Thus the recent successes 
in generating low emittance beams are probably the 
result of the "Pierce"-like geometries used by the 
column designer to implement his high gradient 
criteria rather than a result of the high gradient 
itself. The high gradient has the advantage of 
reducing the beam diameter to a manageable size 
for a given current. 

A simple integral equation for the field re
quired outside the beam to support the Pierce ge
ometry is derived. The equation is exact, based 
only on the 4/3 power law potential gradient at 
the beam boundary and on Laplace's equation out
side the beam. 

Pierce Extraction 

Zero lilni ttance 

Fbr the moment consider an idealized ap
proach and ascume that the beam is to be acceler
ated under conditions of zero emittance. In ad
dition, the zero emittance pattern in r-r' phase 
space should remain linear for all values of z to 
insure that the effective emittance also will be 
zero during acceleration; that is, the emittance 
pattern is not warped. For example, Fig. 1 shows 
on the upper graph, a zero emittance linear pat
tern; and shows on the lower graph, a zero emit
tance non-linear pattern, the effective emittance 
being perhaps defined by the area of an ellipse 
which will just enclose the zero emittance pat
tern. These two assumptions (zero amittance and 
linearity) are sufficient to establish that the 
flow is laminar and the current density distribu
tion in real space remains the same throughout the 
acceleration. This is illustrated in Fig. 2. The 
continuous line represents one trajectory within 
the beam, while the dashed line represents any oth
er trajectory within the beam. It is evident that 
all trajectories are related by simple scaling 

factors. Thus any equation representing a beam 
trajectory must have its boundary conditions such 
that the equation is independent of a when ar is 
substituted for r. 

Coaxial Beam Trajectories 

A time-independent spatial descriptionl ,2 
of individual particle trajectories within a 
beam having a given current density distribution 
and under the constraints of an externally applied 
electric and magnetic axially symmetric field is 
given by 

r" 
[1 + (r' )2J (O(eCP**) 

2( eq>**) Or 
r' O(eCP**») 

OZ 

where 

(2) 

and C 

2 
Also e<P* = ecp + (:) is the "effective" electric 

o 
potential energy and e~ is normalized so that it 
is equivalent to the kinetic energy of the particle. 
In the above equations r, z, and 6 are the usual 
cylindrical coordinates and A is the magnitude of 
the magnetic vector potential, including both beam 
self fields and externally applied fields. The 
prime indicates a differentiation with respect to 
z. E is the rest energy of the particle, e the 
chargg on the particle, and c the velocity of 
light. A detailed inspection of the r dependence 
of the various terms in equations (1) and (2) will 
show that the set of conditions needed to meet the 
scale change criterion developed in(:he )receding 
paragraph is that r', r", 6', and ° eq>II* IllUst be 

r 
zero everywhere in the beam. 
trajectories must be coaxial 
lute zero emittance pattern. 

Zero Angular Momentum 

Thus the beam 
to insure an abso-

Equation (2) can be expressed in more famil
iar terms by recognizing that the angular JlX)men
tum is 

*Work performed under the auspices of the U. S. 
Atomic Energy Commission. 
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Making this substitution into equation (2), it can 
be written in the form 

(4) 

(\ 
From our criterion that or(e~) = 0 every-

where in the beam, or equivalently that eCP** must 
be independent of r, it is noted from equation (1) 
that the constant C must be zero. If it is not, 
equation (4) shows that a particle emitted in a 
magnetic field will attain mechanical angular 
momentum when leaving the field. Thus it is impor
tant that at the plasma surface, where the protons 
are extracted into the accelerating column, there 
are no magnetic fields which will contribute to 
the non-linear emittance pattern. 

Uniform Density Distribution-Child's Law 

The fact the eCP** must be independent of r, 
also implies that ~ must be independent of r. 
From Poisson's equation 

10 f_ (\ ) (\2 P 
-~ (e(fl) + ~(eCfl) = - : 
r vr r oZ 

it is quite clear that the charge density (or cur
rent density) also must be independent of r. 
Therefore equation (5) reduces to 

(6) 

where only the relativistic mass correction is 
assumed to be negligible. This differential equa
tion can be solved easily for CfI, the required 
potential distribution within the beam, and yields 
the familiar Child-Langmuir space charge law. 

4 --;l/2~ 2/3 
CfI = Q'Z /3, where ex = [~~e) J (7) 

Pierce Geometry 

External Fields 

The ideal approach to an accelerating column 
is to accelerate a uniform density beam according 
to the 4/3 power law, as outlined in the preceding 
paragraphs. Under these conditions the potential 
within the beam is independent of radius and as a 
result there are no forces present internal to the 
beam to warp the emittance pattern. The field 
necessary outside the beam to support this 4/3 
potential gradient along the beam has not been 
calculated theoretically except for the sem1-
infinite rectangular beam and for the infinitely 
thin line current. The geometrical design criteria 
for the circular beam "Pierce gun" is usually 
developed experimentally from electrolytic tank 
measurements. Therefore, it is of both academic 
and of practical interest to attempt a theoretical 
approach to this problem. 

Consider a uniform density beam of radius P 
formed by a parallel flow of particles being emitted 
from a plane plasma surface at zero energy and being 
accelerated by a series of equipotential surfaces 
formed in such a manner that the energy gain obeys 
the required 4/3 power law. In order that the 
radial forces at the edge of the beam be zero, the 
radial potential gradient at the edge of the beam 
also must be zero. Thus our boundary conditions 
are 

a. V(R,Z) = oz4/3 at R = 1 

at R = 1 (8) 

where Rand Z are dimensionless units r/r and 
z/r respectively and where r is the rac]jus of the 
bee.£.. Outside of the bounda~, where R > 1, the 
potential everywhere must obey Laplace's equation 

1 (\ { 0 } 0
2 

R OR R OR V(R,Z) + ~ V(R,Z) = o. 
OZ 

The form of the solution of this equation which is 
appropriate to our boundary conditions can be ob
tained by a separation of variables; that is, 
U(R) W(Z) is a solution to Laplace's equation where 

U(R) = a(k) Jo(kR) + b(k) Yo(kR) (10) 

and W(R) = e-kZ 

and where k is an arbitrary variable. Here J (kR) 
is a Bessel function of the first kind of ord~r 
zero, and Y (kR) is a Bessel function of the second 
kind of or~~r zero. We now ask that U(R) = l~ 
R = 1 and ~ U(R) = 0 for R = 1. Therefore 

a(k) J (k) + b(k) Y (k) = 1 
o 0 

and -a(k) k Jl(k) - b(k)k Yl(k) = o. 

Solving these two equations Simultaneously, we find 
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We are now able to write the entire solution for 
Z > 0 in terms of our arbitrary variable 

V(R,Z) = J c(k) U(R) e-kZ 
dk 

o 

... 
and V"(R,Z) = J C(k)k2 U(R) e-kZ 

dk (12) 
o 

The arbitrary coefficient can now be evaluated be
cause V"(R,Z) is known along the boundary, R = 1-
Therefore 

V"(l,Z) J c(k)k2e-kZ dk = ;a z-2/3. 
o 

This equation is well behaved and is conveniently 
in the form of a Laplace tran~formation, so that 
it is easily solved for c(k)k 

(14) 

where f(~) is the gamma function of 2/3. One may 
now rewr~te the equation for both V"(R,Z) and 
V"(l,Z) and subtracting one from the other 

V"(R,Z) = 4a
z-2/3 + J 4a 1 lU(R)-

9 0 9r(1) kl/3 }
-kZ 1 e dk. 

Integrating this expression twice, one obtains 

QO 

4/3 J 4cr 1 .. 
V(R,Z) = crz + 9rOO J13 lU(R) }

-kZ 
- 1 e dk 

o 9f - k 
3 

(16) 

The last two terms are generated as integration 
constants. As V(R,Z) must obey Laplace's equation 
for every R > 1, Z > o;then F (R) = K2nLR and 
F (R) = IS. LnR. Howe~er, our ~oundary conditions 
also stipulate that ~ V(R,Z) = 0 at R = 1 for all 
Z; therefore K2 and ~ must both equal zero. 

Our final equation for the potential distri
bution outside of the beam needed in order to sup
port the 4/3 power potential gradient is 

QO 

z4/3 + J 4 
o 9r(~) 

~ {U(R) - l}e-kZ 
dk. 

k (17) 

R ~ 1, Z > 0 

Attempts to solve this expression analytically 
have not been productive, and although solutions 
in the form of numerous infinite series are 
possible, the convergence is often so slow as to 
make the process untenable. However, as the 
integrand is well-behaved for all values of k, the 
formulation is subject to easy analysis by compu
ter. Figure 3 is the result of computer runs show
ing the plot of R versus Z for various equipoten
tial values of V(R,Z)/cr. Also, the values as 
measured many years ago by Pierce are shown by the 
dark lines on this plot. The agreement is quite 
good considering the accuracy which might be ex
pected from the experimental electrolytic tank 
measurements. 

Zero Potential Cone Angle 

The shape of the zero equipotential surface 
for large values of R becomes conical in shape. 
The cone angle has been

6
calculated by Spangenberg,5 

71° ; and by Lapostolle, 74° 10'. In the latter 
case, the field distribution was calculated for a 
line of charge having the 4/3 power potential 
gradient and should correspond to our case for 

VIR Z' R > > 1. Setting ~ equal to zero in 
equation (17) 

For values of R» 1, z» 1, U(R) can be approxi
mated by letting k ~ 0 in U(R), but not kR. Thus, 
U(R) ~J (kR) and one can rewrite equation (18) 

o 

Again, this expression has not yielded to an ana
lytical solution and one is forced to make further 
approximations or to put it on the computer. Our 
approach has been to do both. The angle as 
measured off the computer field pl~ts is 740

• If 

J (kR) - 1 is approximated by (kR) , the first 
tgrm in the power series expansfo~, one can solve 
the resulting equation and finds ~ = 3 or 710 33'. 
However, if one tries to include more terms in the 
power series, the answer varies radically depending 
on the number of terms, indicating the integral of 
the series does not converge. One is led to other 
types of approximations. For example if one lets 

kR~ kRy 
"" (kR)2 -"""""2 "(kR)3 -"""""2 Jo(kR) - 1 2' e - ~ 2' e 

where [
. /3 -r-/2 

I' = :2{2-73j 

and then solves equation (19), the resulting 

(20) 
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transcendental equation can be evaluated and B = 
3.42 or a cone angle of 730 45'. Equation (20~ is 
equivalent to a two-term approximation, converges, 
and is Laplace-transformable. As it turns out, 
equation (20) is not valid for large kR, but then 
J(kR) does nd contribute to the integration for 
large kR. At this stage of theoretical development 
various analytical solutions will be subject to 
different approximations, which can vary slightly 
the resulting cone angle. Equation (20) appears to 
be in agreement with the computer measured angle of 
74°± 1/40

. 

Accelerating Column 

As an exmnple of the "Pierce" Geometry, Fig. 4 
illustrates a cross section of the extraction re
gion of the preliminary design of an accelerating 
column for the Los Alamos Meson Facility. The 
column is designed for 50 milliamperes and a beam 
radius of 0.7 em. The equipotential electrodes are 
to be built of Ti-6Al-4V alloy and the maximum 
potential gradient, which is at the exit end of the 
column, is approximately 30 KV / em. The ceramic 
rings and Ti alloy electrodes will be vacuum brazed 
in a manner similar to that employed by Klystron 
tube manufacturers, that is, the ceramic and Ti 
alloy will have matched temperature coefficients 
and will be sealed at high temperatures (9500 C) by 
react i ve metal brazing. The supporting structure 
for the equipotential electrodes are truncated 
cones of the same Ti alloy and are perforated by 
holes to aid in the hydrogen pumping problem. The 
holes will be staggered from support to support to 
prevent a continuous path for secondary electrons 
through the entire column. Visual access from the 
beam to the ceramic spacers is denied by the 
orientation of these support structures. 

Finite Emittance 

It is extremely difficult to include a finite 
emittance into the beam and to carry out a similar 
type of analySis to determine the optimum current 
denSity distribution and optimum accelerating po
tential distribution to minimize the growth of 
effecti ve emittance. Assumption of finite emi t
tance patterns implies knowledge of phase space 
distributions and its interplay with real space 
denSity distributions. This knowledge is lacking. 
However, it is quite evident that a finite emit
tance will eventually degrade an initially uniform 
current denSity distribution unless the emittance 
has a very specific, non-realistic, phase space 
distribution as determined, for example, by Kap
chinskij and Vladi~rSkij7 for the non-accelerated 
beam, and by Ohnuma for the accelerated beam. 
If we make the assumption that the normalized 
emittance is more or less constant during the 
acceleration through the column, we can follow the 
procedure of Walsh9 and add a term to the right
hand side of equation (1) to include the emittance, 
e, where r is now changed to R, the outer radius 
of the beam, and the density distribution is as
sumed to be constant. The added term is 

Equation (1) with the above additional term 
gives the motion of the envelope of the beam 
through the accelerating column. It is easy to 
compare the added term of the equation, containing 
the emittance factor, with the other terms of 
equation (1) containing the current factor. The 
emittance term is usually very small (two orders 
of magnitude) as compared to the current term for 
most of the recent accelerating column designs. 
Thus the emittance term can be neglected in de
termining the accelerating potential distribution 
and equation (7) can be used with confidence 
knowing that one is not doing any great violence 
to the concept of maintaining a very low effective 
emittance. 

Summary 

The Child-Langmiur law has been solved in a 
rather roundabout manner, including the external 
fields necessary to maintain the 4/3 power po
tential gradient; but in so doing the facts are 
established that in order to maintain a zero 
effective emittance during acceleration, the beam 
must be: a) formed in a magnetic field free re
gion at the plasma boundary; b) extracted from 
the plasma surface with a uniform density distri
bution; and c) accelerated according to the 4/3 
power potential gradient. 

It may be well to point out that even if r' 
and r" are not zero (but still r" «1, giving a 
"Pierce"-like geometry) equation (1) will still 
allow the scale change criteria r ~ ar without 
changing equation (1) too much. However, Slight 
changes in the denSity distribution have a much 
more pronounced effect and will lead to more 
serious emittance warping. It would appear that 
a uniform density distribution should be the pri
mary objective in a low emittance column design 
with as near a "Pierce" geometry extraction system 
as practical. In addition, the beam should be 
extracted from the plasma surface in as near a 
magnetic field free region as possible. 
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DISCUSSION 

C. R. EMIGH, LASL 

LEFEBVRE, Saclay: I just want to say that, ex
perimentally, we have found the denSity distri
bution to be an extremely sensitive factor for the 
beam quality. I"e found that slight modifications 
of the expansion cup geometry greatly influence 
the denSity distribution at the extraction level. 
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Fig. 4. Partial accelerating column design. 
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Fig. 3. Pierce geometry external field pattern. 

Proceedings of the 1966 Linear Accelerator Conference, Los Alamos, New Mexico, USA

402


