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Introduction

A number of physics studies require short pulses
and high peak currents from electron linacse The du-=
ration of these pulses can be much shorter than the
filling time of the accelerator, in which case the
operation cannot reach a steady state. Hence, it is
necegsary to develop a theory valid for such condi-
tions. Leiss and Schrack!! , in particular have
made an exhaustive analysis of this case, later ex—
posed in abridged form by Leiss during the 1965
Linear Accelerator Conference. The main result of
this study was a large increase of the beam-loading
during the initial period of the beam pulse (about
ten r.f. cycles) with respect to what would be com-
puted in a conventional manner, disregarding the
dispersion of the wave guide.

The present study was initiated with two main
objects in mind : First, to get a better physical
understanding of the phenomenon and its causes since
the mathematical intricacy of Leiss' analysis did
not allow an intuitive appraisal of the situation.
Second, to obtain approximate analytic expressions
for the beam loading in order to avoid the use of
computers and be able to appreciate rapidly the in~-
fluence of each parameter.

The unexpected result was that our analysis did
not show any trace of the extra beam loading disco-
vered by Leiss, in spite of the fact that most ini-
tial assumptions were icentical for both cases.
Instead, our result is very close to the one obtai-
ned in the more naive approach neglecting dispersion
effects.

de shall now give the detail of this analysis,
followed by a discussion on the reasons for the
discrepancy between Leiss and use.

Analysis of Transient Effects

Assumptiong

As already mentiomned, most assumptions are es-
sentially the same as in leiss :

1) The wave guiding structure is assumed to be per—
iodic and to carry a single mode. 1t is, however,
nossible to take into account higher order modes
considering each one geparately and adding their
contribution.

2) The beam is supposed to be made up of very tight
bunches which can be assimilated to delta func-
tions of time and space. These are further
assumed to experience no change in velocity due
to the fields in the structure. This last as-
cunption is fulfilled in the case of ultra
relativistic beams. Hence, the electrons will be
supposed to propagate at the speed of light.

3} The gaps of the different cells are supposed to
be well separated in space, with the consequence
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that a single bunch crossing a gap induces fields
in this gap only, not in the .neighbouring ones.
The effect of the transit time through the gap
will be assumed negligible or else taken into
account by a constant factor. In the analysis,
this factor will be omitted for the sake of sim-
plicity.

4) The dispersion of the wave guiding structure will
be the same as in Leiss, though written somewhat
differently.

5) Unless otherwise specified, the structure is
supposed to be lossless.

Hotation

-

phaseshift between adjacent cells at frecuen-
cy w
w, midband angular frequency corresponding to
= T2
A w half angular bandwidth of the structure
n cell number
P cell length
Vg = paw group velocity at midband (= w. )
q charge of an electron bunch
C equivalent capacitance in a sinsle cell
L = 1ﬂ3¢u§ eguivalent inductance in a single cell
=L inductance per unit length
T = p/c transit time of a bunch across one cell.

Case of a Single Bunch

ligcitation of a Single Cell. We shall first consider
the excitation of the struciure by a single bunch.

By adding the field contribution of the successive
bunches it is then possible to obtain the field
configuration as a function of time and cell number
as well as the beam energy loss.

As a very first step, let us compute the excita-
tion of a single cell by a single bunche We shall
admit that the section can be cousidered as a set of
coupled resonators. Let us suppose that an electron
bunch appears suddenly at the beginning of a cell,
crosses the cell and then disappesrs. If the tran-
sit time through the gap is very small, or if the
couplingdevice between cells is far enough removed
from the gap (case of coupling by loops or inductive
holes) so that no r.f. field has time to reach it
during the transit of the bunch through the gap, the
uncoupled to its neighbours. Consequently, the
initial field in a single cell is the same as for an
uncoupled resonator. This assumption is rather well
satisfied in practice, especially for narrow band-
width structures.

The voltage appearing across the map of a reso-
nator after the passage of a single bunch is, in case
of negligible transit time
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V= qfC (1)

This rather obvious result can be refined by taking
into account the finite length and radius of the
gap through a development of the current delta func-
tion into a Fourier integral, but apart from a chan-
ge in the numerical value of C, the relation (1)
remains valid.

Coming back to the entire waveguide, we have the
following situation at time t = O, right after the
crossing of the gap of a single cell which will be
called the n® O cavity, the cells on the right ha-
ving a positive number, those on the left a negative
one : all cavities are empty, except for cavity n® O
across the gap of which a voltage given by equation
(1) is developed.

In order to proceed further, we have to define
the dispersion of the structure. We shall choose a
dispersion equation which, though different in shape,
is in fact strictly eguivalent to the one used in
Leiss. This is :

W= w, —a w cos P (2)

It fits measured dispersions to an excellent approxi-
mation. Thus the general expression of the voltage
developed across the nth gap when the structure is
excited at e single frequency «w can be written 3

UtL U, e 4 (wt_’r\‘P)g'U'oe4[(w°_choA\f’>t.m‘f](3)

which at time t = O reduces to :

U,“(O§= Vo e’d’”‘"9 (4)

We are now faced with the problem of satisfying the
initial conditions, that is, no field anywhere except
in the n® O cell, by means of a sum of terms like
those in equation (4) which are the only ones to sa-
tisfy the dispersion equation. This task is readily
accomplished by writing :

Gno= 53¢ (K et™Pdy (5)

where it is easy to see that G(«x,o ) is zero for any
M except M = 0, for which G(o, 0 ) = q/C.

The subsequent behavior of the field will be
expressed by

G (m,¢) ='ﬁ_f_2 e 4(wt-mPly e
%
m

Jn being the Bessel function of first kind and
nth order one can immediately check that this expres-
sion
1) satisfies the initial conditions
2) is made up of waves obeying the dispersion rela-

tion hence that it gives the response of the sec~
tion for the excitation of a single cell by a
single bunch.

The physical meaning is clear : it is a well
known property of Bessel functions of first kind
that their magnitude is negligibly small until the
argument reaches approximately the value m . So, a
field starts to appear when

Awt = m (7
or, since aw :L\;_"l
'V‘g t > mp (8)

which means that the energy propagates with approxi-
mately the velocity V3 , group velocity at the
midband frequency, or still, largest group velocity
in the band. The propagation is symmetrical with
respect to the excited cells It is to be mentionned
that equation (6) has ¢ . physical meaning for
t20. For t <0 it must be assumed that the field
is zero everywhere, so that the complete solution is
the product of the right hand side of equation (6)
by a step function starting at t = O,

Case of a Lossy Structure. We shall assume that the
current and stored energy distribution in the struc-
ture do not vary appreciably across the passband.

In that case, we can consider the Q of the section
as constant. The presence of losses implies a small
imaginary component in the frequency, the term

w (4= replacing w» written for the lossless
case. Hénce the dispersion formula

w (4-24_(2>_—_w°_ Aw cos P (9)

Calling = the attenuation per unit length, one can
check that the usual relation :

o = z‘g_v.i is fulfilled.
Introduction of (9) into (6) results, in the first
approximation, in the multiplication of its right

hand side by a factor —ok
e 2Q
From this point on, we shall again assume the

structure lossless.

BExcitation of a Section by a Single Bunch

We are now in a position, by summing the contri-
bution of each cell, to compute the field excited
all along the structure by a single bunch. For the
sake of convenience, we shall give the number zero
to the cavity where the total field is computed, the
bunch being supposed to cross this cavity at time
t = 0. The problem is formally solved by adding the
contribution of the successive cavities, taking into
account the delay between their excitation due to
the finite vglocity of the bunch :

Vo(t) = _§=?G<_'n,h_'n‘f) (10)
L
or Vo (t) =Z TG(m,t—'n‘f)since G(m, bt ) =G(m,t)

t
T
v, (t):g- e Jwot Z e —4m(ws +%‘)J'm(4wt.mAm1 1)

where _m is the cell number at the beginning of the
section and ¢ the trangit time of the bunch across
one cell. We have not been able to achieve the sum~
mation of this expression in closed form and the use
of a computer would be required to get exact numeri-
cal values. It is possible, however, to make appro-
ximations which allow analytical summation and give
formilas readily interpretable from a physical point
of view. (2)

First approximation. The method consists in develo-
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ping the Bessel functions in a Taylor series around
awt

an(AwL'nAwT) J,,(Awt) -n AwTI'; <Aw l:)+"ﬁ5§’irz.]'”<4w l:) -

This development, limited to its first terms, is in

particular valid as long 88 nawT<< 1. Remembering
thataw=v /p and T = p/c we get the condition :
n<co/vg (13)

Now, the power released in the nth cavity requires

a time @ np/vg to reach the Oth cavity., Neglecting
the bunch transit time with respect to the r.f.
energy transit time, it is obvious that the influen-
ce of the + nth and - nth cavities will be felt on
the Oth cavity at time t = np/vg, at which time the
influence of all higher rank cavities is negligible.
Hence, condition (13) is certainly satisfied provi-

ded
t & %% (14)

This condition, applied in the common case of 4
cells per wavelength can be expressed as 3

T/ c\8
wot << 2 kv})

To get an order of magnitude we shall suppose

c/v = 50 which is a value often found in practice.
Then the condition (14) is satisfied when the number
of r.f. cycles remains less than about one hundred.
Fortunately, this is the period of interest to us,
when the phenomenon of extra beam loading is suppo~
sed to happene.

One more assumption is to be made, that the oth
cell is not too close to the section input, that is
m > 10 for instance. With all these restrictions,
the field in the O} cavity is the same as if the -

section were infinite and equation (11) can be repla-

ced by :

V°<t>=—2—e Zwotioe*d‘"(“’o’(“'%) ['n (Awlf)—maw't’l‘,(tswt%}

-0
(15)
The summation taking into account only the first of
the terms between brackets is readily accomplished
by means of the Jacobi-Anger forrmla, which is the
basic formula for spectrum analysis of frequency
modulation 3

X:fe_d'"(w“’m%) Jm(amk>=e'4Awt M(w;t% %—>
l oo

(1e)

and since w,T o~ wT =9 (r1)
¥ being the synchronous phase

X - —4 Awb cod ‘f (18)
!

Hence, with the help of (2)

t

Voi(b)=d e 4@
MGE

V,_-,' being the first approximation to the voltage

developed in cavity O. It should be noticed that
this approximation corresponds to the simultaneous

o<cwt < 2oorw (19)
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excitation of all cavities with correct phases at
time t = O. The striking result, in this approxima-
tion, is that the cavity starts right at the begin-
ning to oscillate at the synchronous frequency w ,
without any phase or amplitude modulation, in perfect
agreement with the simple calculations neglecting
dispersione.

Second approximation. The second term of expansion
(15) can be summed as follows 3

Z;ioe_ﬂ'"(“"oq""lci) nawT J:,‘ (Awt)

(20)
:iz—d'n(%’ﬂ%) '"—Az“f;t(lm_'(awfl‘)-ln_'_‘(/:w"c’))
putting T + 325 = u (21)

EZ:A%E_ZZ:E am ’nUﬂ—F]mu)
= —a’)—dize j"nll( |_I’n+|)
-2 | LA e Ty

=4wT d ZMufe_jmuJ jl
Zz dua m

Using again Jacobi-Anger

=A(;Tddu Pamu e éAthLL]
AwT

(zmu—sz wt aimu mu)e‘é"wt 4l o)

2
Hence, combining with (17) and (21)

Zz A;‘T( “24inPazf awt AinPeos P)e setees P,

Now, we cannot be satisfied with the approximetion
(17) made to obtain the first order term. We have
to improve it to include terms of the order we are
lookdng for. So (17) becomes, taking (2) into account

w, T =\f+ AawT cofs‘f

and

A (> de 4[})& sawt co('P+awTcos ‘f’):]



Proceedings of the 1966 Linear Accelerator Conference, Los Alamos, New Mexico, USA

Since Ac>T 1is verv small, the exponent acan be ‘
developed to first order as

Wot — A wt cosf + B wt HNMP 2w T cor P

= wt+ awt é%f! pim 2P

so that Vo, becomets. to this approximation
- w
Vo,(t) = % e 4 (4-1-3 st Aln 2 'f)

combining with (23) we obtain the second approxims~
tion

V°2(t)=% e ﬂwt[*l-wa’t' Aun‘f]
and, from the definition of Aw and T~

Voz(t) =-g— e dwl‘-[:»ﬂyc—:— M“f’] (O<w!:<2001t)(24)

One should remember that, from the definition of Vg
(group velocity at midband) vg sin \P represents
the group velocity at the synchronous frequency.

Equation (24) shows a negligible change with
resvect to (19). The corrective term does not intro-
duce any phase shift and is small enough to be ne=-
glected in practice. As a result no extra beam
loading is to be expected. This is shown by a compu=
tation of the average field induced by the bunch
which is obtained by summing the voltage drops over
a unit length :

Since € = 1/Lw?2 and L = £ p, the average field
seen by the beam is given by :
2
E, = £ w?q
which corresponds exactly to the classical formula.
The difference by a factor 2 between both formilas
is due to our definition of & since the stored

energy per unit length would be written in our nota-
tion as :

W= E2/2 $w2 instead of the usual W = E2/ Lt

Comparison with Leiss Theory

Though both theories start with similar assump-
tions, their results are by no means compatible.
The techniques used in both cases are different twhe-
reas Leiss uses an expansion of the fields in terms
of time and frequency as conjugate variables (in his
Laplace transform), we use phaseshift and cavity num—
ber for the same purpose, which is equivalent to the
use of space coordinates and propagation constants
as conjugate variables. Both techniques are per-
fectly legitimate and equivalent, as evidenced by a
number of examples given by Stratton in "Electro-
magnetic theory". The choice between them is simply
a matter of convenience. Still, the first discrepan-
cy arises almost at the beginning, for the exprese
sion of G{m , tJ_). (In oux; notation, Leiss ?Ilc)tains H

- mim(owt w,t-mnT )

G (mt)= minlowb) o g(w.t-2R) ()
(The factor Acw in the denominator has been added

in order to get a dimenaionless expmssion) whereas
we have )

G (m,t): Im (Aw(‘.) e '3(“°t_ TE.E

This, as we yrecall ', is the voltage induced in the
waveguide by a single bunch passing through a single
cavity. Let us examine what happens in the 0th ca-
vity, which is the cavity directly excited by the
bunche. In our theory, the amplitude of the voltage
across the gap is Jo(Awt); in Leiss theory, it is
strictly zero all the time. This rather surprising
result is explained by the fact that it has been
explicitly assumed by Leiss : "As the current pulse
passes point u (this is our cavity n° 0) it induces
a delta functionSvoltage and current impulse in the
waveguide seee" )This statement cannot be correct,
since 1t gives the value of the voltage at this
point at any time which, in fact, is part of the
problem to be solved. In our opinion, the only
correct statement of the initial condition is ex=
pressed by the fact that at time t = O some voltage
is induced on the OVh cavity, all other cavities
being empty. This way, no assumption is being made
on the further behavior of the field anywhere in the
waveguide and the fact that we have been able to
carry out our calculation without further assumption
shows that it is sufficient.

(26)

Going back to the Leiss expression (25) and
using a well known identy, this becomes
m1C

GL‘<'N,t> =é—[I,n_‘<Awh)+ m+|<Aw\'-> e 4((»0\:— —-2—>

which can also be w%itten as @

_j_
Gh(’n)t)z ___2_2__

o focst) < 4 [eat-m0 5] 5

pid

nH (Am t')e '3 E%t -+l ‘;—‘

b
This, within the unimportant phase factor e 4 2
represents in our theory the field excited at time
t = 0 by two half bunches, one made of electrons
passing through cavity + 1, the other of opposite
charge passing through cavity - 1. I{ is not surpri-
sing, because of anti etry, that the field
remains zero in the Oh cavity.

This difference alone, however, is not suffi-
cient to explain the large beam loading found by
Leiss. If we consider for example the case of a

/2 phase shift, the effect of two half bunches
of opposite sign half a wavelength apart should be
almost identical to the effect of a single bunch.

The explanation, we think, lies in the fact
that, while summing up in one cavity the fields
originating from the excitation of the other cavi-
ties, Leiss systematically neglects the contribution
of the field sources located downstream with respect
to this cavity, taking only into account what he
calls "forward waves". While this procedure could
perhaps be justified in the case of a steady state,
forward wave interaction, it is certainly unwarran-
ted for a transient state. In that case, the so
called "backward waves" (with negative group veloci-
ty) tring an important contribution to the total field
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of the cavity, in fact so important as to cancel the
spurious beam loading due to the "forward waves"
alone. As far as electrons are concerned, they do
not care whether the energy comes from fight or left,
as evidenced by backward wave interaction; they are
acted upon by the total field.

In conclusion, we have outlined a theory for
transients in linacs. In spite of some approxima-
tions (for example the dispersion equation is not a
solution of Maxwell's equations since it should be
at least even in ¢ ) this theory can still be
accurate enough to satisfy most practical purposes.
It can of course be extended to problems which were
not considered in this paper such as the filling up
of a linac section, the transient interaction with
higher order modes, etc +.ss
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(1) J.E. Leiss and R.A. Schrack "Transient and beam
loading phenomena in linear electron accelera=~
tors",

N.B.S. internal report Oct. 62
This report will be referred for brevity as
Leiss.

(2) It is to be mentionned that this method takes
automatically all space harmonics into account
since it gives the total field at each gap.

(3) See ref. (1) page 27.

Note written in proof s We have recently succeeded
in obtaining the complete summation of equation (15)
in closed form without any approximation. The re—
sult is

iwf

v () -1 €
¢ ¢ 4_'\" 4infP
[ o]

which is very close to the result given by equation
(24). The conclusions remain obviously the same.
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