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In troduction 

A number of physics studies require short pulses 
and high peak currents from electron li.'1acs. 'rhe du
ration of these pulses can be IlIUch shorter than the 
filling time of the accelerator, in which case the 
operation cannot reach a steady state. Hence, it is 
necessary to develop a th~oty valid for such condi
tions. Leiss and Schrack,l), in particular have 
made an exhaustive analysis of this case, later ex
posed in abridged form by Leiss during the 1965 
Linear Accelerator Conference. The main result of 
this study was a large increase of the beam-loading 
during the initial period of the beam pulse (about 
ten r.f. cycles) with respect to 1-lhat 1-lould be com
puted in a conventional manner, disrec;arding the 
dispersion of the wave guide. 

The present study was initiated with two main 
objects in mind: lirst, to get a better physical 
understanding of the phenomenon and its causes since 
the P.lathematical intricacy of Leiss' analysis did 
not allow an intuitive appraisal of the situation. 
'-lecond, to obtain approximate analytic expressions 
for the beam loading in order to avoid the use of 
computers and be able to appreciate rapidly the in
fluence of each parameter. 

The unexpected result was that our analySis did 
not' show any trace of the extra beam loading disco
vered by Leiss, in spite of the fact that most ini
tial assumptions were iCentical for both cases. 
Instead, our result is very close to the one obtai
ned in the more naive approach ne~;lecting dispersion 
effects. 

lie shall now give the detail of this analysis, 
follOl'led by a discussion on the reasons for the 
discrepancy between Leiss and us. 

Analysis of Transient 8ffects 

Assumptions 

As already mentionned, most assumptions are es
sentially the same as in Leiss : 
1) The wave guiding structure is assumed to be per

iodic and to carry a sin~le mode. It is, however, 
possible to take into account hi~her order modes 
considering each one separately and adding their 
contribution. 

2) The beam is supposed to be made up of very tight 
bunches which can be assimilated to delta func
tions of time and space. ~'hese are further 
assumed to experience no change in velocity due 
to the fields in the strll.cture. This last as
Gumption is fulfilled in the case of ultra 
relativistic beams. Hence, the electrons will be 
suvposed to propagate at the sneed of light. 

3) 'l'he gaps of the different cells are supposed to 
be well separated in space, wi th the consequence 

that a single bunch crossing a gap induces fields 
in this gap only, not in the ,neighbouri<'lg ones. 
The effect of the transit time through the gap 
will be assumed negligible or else taken into 
account by a constant factor. In the analysis, 
this factor will be omitted for the sake of sim
plicity. 

4) 'lne dispersion of the wave guiding str<lcture will 
be the same as in LeiSS, though written somewhat 
differently. 

5) Unless otherwise specified, the structure is 
supposed to be lossless. 

]fotation 

phaseshift between ad,iacent cells at freouen
cy w 
midband angular frequency corresponding to 
'f' =0 TC/2 
half angular bandwidth of the structure 

n cell number 
p cell length 
V~ = I'A W group velocity at midband (w = w 0 ) 

q charge of an electron bunch 
C equivalent capacit,'lnce in a sii11'"le cell 

1 = l/C c..v; equi valent inductance in a single cell 
';£ = 1/Jl inductance Der \mi t length 
~ = pic transit ti~e of a bunch across one cell. 

Case of a Sin~le Bunch 

8xci tation of a Single Cell. Vie shall first consider 
the excitation of the strelC 'cure by a single blmch. 
By adding the field contribution of the successive 
bunches it is then possible to obtain the field 
configuration as a function of time and cell number 
as well as the beam energy loss. 

As a very first step, let us co;;;pute t"le exci ta
tion of a sin,,,le cell by a single bUIlCh. de shall 
admi t that the section can be considered as a set of 
coupled resonators. 1et us GUppose that an electron 
bunch appears suddenly at the beginning of R cell, 
crosses the cell and then disappefJ.rs. If the tran
si t time through the gap is very sll1&ll, or if the 
couplingdev:ioe between cells is far enough re:noved 
from the gap (case of coupling by loops or inductive 
holes) so that no r.f. field has time to reach it 
during the transi t of the bunch through the gap, tile 
excited cell can be at that time considered 'is 
uncoupled to i ts neighb~;;:-C;nseque'\ tly, the 
ini tial field in a single cell is the same as for an 
uncoupled resonator. 'i'his assumption is rather well 
satisfied in practice, especially for narrow band
width structures. 

The voltage appearing across the r:Rp of a reso
nator after the passage of a single bunch is, in case 
of negligible transit time: 
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v = qje (1 ) 

'Ibis rather obvious result can be refined by taking 
into account the finite length and radius of the 
gap through a development of the current delta func
tion into a Fourier integral, but apart from a chan
ge in the numerical value of e, the relation (1) 
remains valid. 

Coming back to the entire waveguide, we have the 
following situation at time t = 0, right after the 
crossing of the gap of a single cell which will be 
called the nO 0 cavity, the cells on the right ha
ving a positive number, those on the left a negative 
one: all cavities are empty, except for cavity nO 0 
across the gap of which a voltage given by equation 
(1) is developed. 

In order to proceed further, we have to define 
the dispersion of the structure. ~e shall choose a 
dispersion equation which, though different in shape, 
is in fact strictly equivalent to the one used in 
Leiss. This is : 

W = Wo - ~ W ~ c.p (2) 

It fits measured dispersions to an excellent approxi
mation. Thus the general expression of the voltage 
developed across the nth gap when the structure is 
excited at a single frequency ~ can be written I 

u.,lt)_ Uo e 1 (UJt-'I\'f') ... 1Ioe~[(UJo-AUJ~'f')t:...tT1'fj(3) 
which at time t = 0 reduces to 
If'l\(ol= 110 e-~'l'l'f (4) 

",4e are now faced wi th the problem of satisfying the 
initial conditions, that is, no field anywhere except 
in the nO 0 cell, by means of a sum of terms like 
those in equation (4) which are the only ones to sa
tisfy the dispersion equation. This task is readily 
accomplished by writing: 
G ( ~= -=t- (rt: e-1'l'l<f ci'f (5) 

Ill. ,0) Zn:C)-Tf. 
where it is easy to see that G( '11.,0 ) is zero for any 

'T1. except Ill. = 0, for which G( 0, 0 ) = qjC. 

The subsequent behavior of the field will be 
expressed by : 

G ('1\ 1:.) =-9-f T( e -;1(wl:.-'I\<:f)d.f , 2rtC._It 

---=t... r rt ~UJot -~(Awl; c.oJ..'f'+'l1'f'k<o 
- 2ltC -It eel 

= ci e a (UJo t: - '"'t) J'I) (A w l) 

In being the Bessel function of first kind and 
nth order one can immediately check that this expres
sion 
1) satisfies the initial conditions 
2) is made up of waves obeying the dispersion rela

tion hence that it gives the response of the sec
tion for the excitation of a single cell by a 
single bunch. 

The physical meaning is clear: it is a well 
known property of Bessel functions of first kind 
that their magniDlde is negligibly small until the 
argument reaches approximately the value 'T\ • So, a 
field starts to appear when 

Awt ~'T\ (7) 

or, sinoe AW=* 
'V'~ t ~ 'T\-t (8) 

which means that the energy propagates with approxi
ma tely the velooi ty "1 ,group velocity at the 
midband frequency, or still, largest group velocity 
in the band. The propagation is symmetrical with 
respect to the exoited cell. It is to be mentionned 
that equation (6) has I \ physical meaning for 
t ~ o. For t < 0 it must be assumed that the field 
is zero everywhere, so that the complete solution is 
the product of the right hand side of equation (6) 
by a step function starting at t = O. 

Case of a Lossy Structure. We shall assume that the 
current and stored energy distribution in the struc
ture do not vary appreciably across the passband. 
In that case, we can consider the Q of the section 
as constant. The presence of losses implies a small 
imaginary component in the frequency, the term 
w (-1 - ~) replacing w wri tten for the lossless 
case. Hence the dispersion formula 

W (1-L ) =UJo- AW coo'f (9) 
ZQ 

Calling 0( the attenuation per unit length, one can 
check that the usual relation : 

- W is fulfilled. 
0<. - ZQ '\f~ .. 

Introduction of (9) into (6) results, La the flrst 
approximation, in the multiplication of its right 
hand side by a factor - Wo t: 

e za 
From this point on, we shall again assume the 

structure lossless. 

Excitation of a Section by a Single Bunch 

We are now in a position, by summing the contri
bution of each cell, to compute the field excited 
all along the structure by a single bunch. For the 
sake of convenience, we shall give the number zero 
to the cavity where the total field is computed, the 
bunch being supposed to cross this cavity at time 
t = O. The problem is formally solved by adding the 
contribution of the successive cavities, taking into 
account the delay between their excitation due to 
the finite velocity of the bunch 

'T\=~ 
Vo(t) = 2: G(_1\,I:._'T\'t') (10) 

-'m 

t 
'1"1.= ";t'"" 

orVo(t) =[ G(11.,t-11.tt:')since G(_'I"\.) I: ) = G('Tl,t) 
_'In. t. 

'fl-;;: 
Vo(t)=~ e ~wot 2.: e -~'Il(Wo't'+l})J.,(6WL'1l6~11) 

C _'1T1 

where _ 'TTl is the cell number at the beginning of the 
section and 't:' the transit time of the bunch across 
one cell. We have not been able to achieve the sum
mation of this expression in closed form and the use 
of a computer would be required to get exact numeri
cal values. It is possible, hOlfever, to make appro
ximations which allow analytical summation and give 
formulas readily interpretable from a physical point 
of view. (2) 

First aTIProximation. The method consists in develo-
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ping the Bessel functions in a Taylor series around 
Awt 

J ' ~2A7..'1.,.2 u 
71(AW~_'1l.AW't)=J",~W~)_'IIAW-r Jl1(Awt)+~ J (AW ~)---

This development, limited to its first terms, is in 
particular valid as long as 11 AW t«< 1. Hemembering 
thatAW;'Vg/P and 7: = pic we get the condition: 

n«c/vg (13) 

Now, the power released in the nth cavity requires 
a time : nplvg to reach the oth cavity. Neglecting 
the bunch transit time with respect to the r.f. 
energy transit time, it is obvious that the influen
ce of the + nth and - nth cavities will be felt on 
the oth cavity at time t = nplvg, at which time the 
influence of all higher rank cavities is negligible. 
Hence, condition (13) is certainly satisfied provi
ded 

t« ~ 
g 

This condition, applied in the common case of 4 
cells per wavelength can be expressed as I 

w t « rt' (~)2 
o 2 \'\1: 

~ 

(14 ) 

To get an order of rnagni tude we shall suppose 
clvg = 50 which is 8. value often found in practice. 
Then the condHion (14) is satisfied when the number 
of r.f. cycles remains less than about one hundred. 
Fortunately, this is the period of interest to us, 
when the phenomenon of extra beam loading is suppo
sed to happen. 

One more assumption is to be made, that the oth 
cell is not too close to the section input, that is 
m > 10 for instance. With all these restrictions, 
the field in the oth cavity is the same as if the' 
section were infinite and equation (11) can be repla
ced by : 

Yo(t)= ~ e awo~~ e-~'rt(wo,,+J) ~71(.AW~)-'TlAW't'J~~WI:)+j 
(15) 

The summation taking into account only the first of 
the terms between brackets is readily accomplished 
by means of the Jacobi-Anger fo=la, which is the 
basic formula for spectrum analysis of frequency 
modulation : 

00 1( L '" L e -j'Tl(Wo'L+2) Jrn(A(d:)=e-~A.wt Mm(Wo't'+ t) 
1_00 (16) 

and since Wo rt' C::: w" = 'f' 
~ being the synchronous phase r = e -~ A w t co-j 'f 

I 
Hence, with the help of (2) 

(17) 

(18) 

VoI(t)= ~ e 4wt 
o<.wt <. fooT( (19) 

VOl being the first approximation to the voltage 
developed in cavity O. It should be noticed that 
this approximation corresponds to the simultaneous 

excitation of all cavities with correct phases at 
time t = O. The striking resul t, in this approxima
tion, is that the cavity starts right at the begin
ning to oscillate at the synchronous frequency ~ , 
without any phase or amplitude modulation, in perfect 
agreement with the simple calculations neglecting 
dispersion. 

Second approximation. The second term of expansion 
(15) can be summed as follows I 

putting (21) 

00 

= A AWl'(' sL \ e - J 'TJ u. (J - J ) 
II 2 du L 'll-I '11+1 

_ oc:> 

Using again Jacobi-Anger 

Hence, combining with (17) and (21) 

I =~~r((-2M.-nf+Z~Awt .Mmf~f)e-~AUltc:O~ 1'(23) 
2 

Now, we cannot be satisfied with the approximation 
(17) made to obtain the first order term. We have 
to improve it to include terms of the order we are 
looking for. So (17) becomes, taking (2) into account 
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Since /1(.4;11'( is ver.v small. the exponent oan be 
developed to first order as l 

Wo t - A w I: ~ i' + A w \: .wn f A W 't" ~ 'f 
= wI: + Awl: AW't' .Mm 2'f 

Z 

so that VOl becomes, to this approximation 

VoI(~) = ~ e ~Ul~ (t+~ AW~ ~ -6&;n 2 'f) 
combining with (23) we obtain the second approxima
tion 

and, from the definition of A W fU1d q;' 

Yo/c) : ~ e ~wlG+ ~ hiJn'f] (O<W!:<200lCX24) 

One should rsmember that, from the definition of Vg 
(group velocity at midband) Vg sin "f' represents 
the group velocity at the synchronous frequency. 

Equation (24) shows a negligible change with 
resnect to (19). The corrective term does not intro
duce any phase shift and is small enough to be ne
glected in practice. As a result no extra beam 
loading is to be expected. This is shown by a compu
tation of the average field induced by the bunch 
which is obtained by sunming the voltage drops over 
a unit length: 

Since C = 1/Lw 2 and L =~p, the average field 
seen by the beam is given by I 

Eb = '£(..1.)2'1 
which corresponds exactly to the classical fOrrnLlla. 
The difference by a factor 2 between both formulas 
is due to our definition of ~ since the stored 
energy per unit length would be written in our nota
tion as : 

W = 82/2 t w2 instead of the usual W = E2/ 'if CJ.)Z-

Comparison with Leiss Theory 

Though both theories start with similar assump
tions, their results are by no means compatible. 
The techniques used in both cases are different Iwhe
reas Leiss uses an expansion of the fields in terms 
of time and frequency as conjugate variables (in his 
Laplace transform), we use phaseshift and cavity num
ber for the same purpose, which is equivalent to the 
use of space coordinates and propagation constants 
as conjugate variables. Both teChniques are per
fectly legitimate and equivalent, ~s evidenced by a 
number of examples given by Stratton in "Electro
magnetic theory". The choice between them is simply 
a matter of convenience. Still, the first discrepan
cy arises almost at the beginning, for the expres~ 
sion of G( 'n, t). In our notation, Leiss obtains: 
G ('111:)= 'l'lJ.,.,(~wt:) e~(Wot:-'111{;) (25) 
~ I Awl: ~ 

(The factor Aw in the denominator has been added 

in order to get a dimensionless expression) whereas 
we have I 'TI 7t) 

G ('TIll) = J'TI (lIwt) e 1 (wol:- 2 (26) 

ThiS, as we reoall " is the voltage induced in the 
waveguide by a single bunch passing through a single 
cavi ty. Let us examine what happens in the oth ca
vity, which is the cavity directly excited by the 
bunch. In our theory, the amplitude of the voltage 
across the gap is Jo(Awt): in Leiss theory, it is 
strictly zero all the time. This rather surprising 
result is explained by the fact that it has been 
explici tly assumed by Leiss : liAs the current pulse 
passes point u (this is our cavity nO 0) it induces 
a del ta functio~):vOl tage and current impulse in the 
waveguide •••• ". This statement cannot be correct, 
since it gives the value of the voltage at this 
point at any time which, in fact, is part of the 
problem to be solved. In our opinion, the only 
correct statement of the initial condition is ex
pressed by the fact that at time t = 0 some voltage 
is induced on the oth cavity, all other cavities 
being empty. This way, no assumption is being made 
on the further behavior of the field anywhere in the 
waveguide and the fact that we have been able to 
carry out our calCUlation without further assumption 
shows that it is sufficient. 

Going back to the Leiss expression (25) and 
using a well known identy, this becomes 

G
L 

('TI,t) = t{!'TI).:.wl:)+J'TI+I(.:.wt~e ~ (wot- 'TI~) 
which can also be w~tten as : 

-~
G u ( '11, t) : e -I-
~~_, (AW t) e 1 [;." -( ~-,) 11J ... ( A.,)e 1 Et· _('II+I)~ 

'It 
This, wi thin the unimportant phase factor e -~ "2 
represents in our theory the field excited at time 
t = 0 by two half bunches, one made of electrons 
passing through cavity + 1, the other of opposite 
charge passing through cavity - 1. It is not surpri
'sing, beoause ot mt1symmetry, that the field 
remains zero ;in the oth CAvity. 

This difference alone, however, is not suffi
cient to explain the large beam loading found by 
Leiss. If we consider for example the case of a 
r( /2 phase shift, the effect of two half bunches 
of opposite sign half a wavelength apart should be 
almost identical to the effect of a single bunch. 

The explanation, we think, lies in the fact 
that, while summing up in one cavity the fields 
originating frOID the excitation of the other cavi
ties, Leiss systematically neglects the contribution 
of the field sources located downstream \-/i th respect 
to this cavity, taking only into account what he 
calls "forward waves". 'i'lhile this procedure could 
perhaps be justified in the case of a steady state, 
forward wave interaction, it is certainly unwarran
ted for a transient state. In that case, the so 
called "backward waves" (with negative group veloci
ty)~ an important contribution to the total field 
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of the cavity, in fact so important as to oancel the 
spurious beam loading due to the "forward waves" 
alone. As far as electrons are concerned, they do 
not care whether the energy comes from fight or left, 
as evidenced by backward wave interaction; they are 
acted upon by the total field. 

In conclusion, we have outlined a theory for 
transients in linacs. In spite of some approxima
tions (for example the dispersion equation is not a 
solution of Maxwell's equations since it should be 
at least even in W ) this theory can still be 
accurate enough to satisfy most practical purposes. 
It can of course be extended to problems which were 
not considered in this paper such as the filling up 
of a linac section, the transient interaction with 
higher order modes, etc •••• 
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(1) J.E. Leiss and R.A. Schrack "Transient and beam 
loading phenomena in linear eleotron accelera
tors" , 
N.B.S. internal report Oct. 62 
This report will be referred for brevity as 
Leiss. 

(2) It is to be mentionned that this method takes 
automatically all space harmonics into account 
since it gives the total field at each gap. 

(3) See ref. (1) page 27. 

Note written in proof I He have recently succeeded 
in obtaining the complete summation of equation (15) 
in closed fOnD without any approximation. The re
sult is 

which is very close to the result given by equation 
(24). The conclusions remain obviously the same. 
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