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I. Introduction and 8wrrmary 

The study of beam-blowup commenced a fairly 
large number of years ago, and many of the results 
of this paper are already contained ia the consi­
derable existing literature about it. l Much of 
the foll~ving discussion and exposition is inclu­
ded principally for the sake of completeness and 
a unified point of view. 

A chain of independent cylindrical cavi­
ties is a simple model for a linac and is the one 
which we consider in Section III. The normal­
mode fields are described in detail, as is their 
interaction with an off-axis beam, and the result­
ing equation for beam deflection is displayed. 
The magnitude of the coefficient in this equation 
has a simple physical interpretation; namely, it 
is the electrostatic force attracting the bunch 
to its image induced in the wall of the accelera­
ting tube. 

Section IV is devoted to a discussion of 
deflection caused by cooperative buildup of the 
transverse fields by the beam bunches in a more 
general linac model. An equivalent circuit des­
cription of a chain of cavities with linear coup­
ling to nearest neighbors is worked out. The 
relations between the eigenvectors and eigen­
values of this system and the parameters of the 
bunched off-axis beam which are relevant to beam­
blowup are discussed, as is the section-to-section 
variation in the normal modes which is consistent 
,rith coherent transverse-field buildup. 

The next few paragraphs contain an elemen­
tary discussion of energy flow between the various 
degrees of freedom in a linac. 

II. Degrees of Freedom in the Linac 

The purpose of a linear accelerator is to 
transform electrical energy into unidirectional 
kinetic energy of a beam of charged particles. 
Figure 1 is a block diagram showing haH this is 
done. The RF source is the circle in the upper 
left, the box at the upper right represents the 
longitudinal kinetic energy in the beam. The 
presence of the other elements of Fig. 1, which 
are modes of storage, transfer, and dissipation 
of energy, is regrettable but unavoidable. 

For instance a TM mode in the accelerator 
cavity serves as an intermediary between the RF 
power supply and the longitudinal kinetic energy 
of the beam. This accelerating mode interacts 
with the charge-current of the beam bunches. 

McMillan I S applicat i8:1 ~ of Earnshaw's '."heorem to 
the linac tells us, though, that any interaction 
(top center circle on }'ig. 1) '<lhich causes a 
phase-stable acceleration necessarily also causes 
defocussing. Hence 'we r;:ust add another lee; 
(lower left) to the diai~ram, ending in a JOX con­
taining transverse ldnetic ener2;J. erhe defocuss­
ing can then be neutralized by ir:ser-cins strong­
focussing quadrupole lecses, ,r,"ich c&.:1 exchacl;-;e 
energy between the transverse and 10n6itudinal 
kinetic energy boxes. 

This completes the block diagrao for an 
ideal accelerator whose structure has no deflec­
ting modes. This is, unfortunately, impossible, 
and the part of Fic;' 1 below the diagonal, that 
involving the deflecting modes, must be added. 
Energy is fed into these modes mainly from the 
longitudinal kinetic eLergy of the off-axis beam, 
and from them goes into the transverse kinetic 
energy, ehe box at the lower left. Too much 
transverse kinetic energy can be disastrous. The 
aim of studying beam-blOWUp is to find means for 
keeping the amount small. 

The deflecting mode a~litude in a given 
cavity is built up over the course of time by 
the coherent contributions of each passing bunch. 
This is the 1'eature which puts its effect on the 
transverse beam motion in a different category 
from that of the accelerating mode, which is 
essentially known, constant in time and compen­
sated for by the quads. 

Energy flow arowld the lower right-hand 
corner of Fig. 1, from longitudinal to trans­
verse kinetic energY,can be inhibited in three 
distinct ways. First, the structure might be so 
deSigned that it is very lossy for these modes 
but not for the accelerating mode. Second, the 
phase of the deflecting mode in some of' the sec­
tions can be reversed and its magnitude increased 
enough so that the net deflectioa over many sec­
tions averages to zero. Third, the properties 
(frequency, eigenvectors) of the deflecting modes 
in the various sections can be tampered with in 
such a way that the contribc;tions of successive 
bunches to the deflecting mode amplitude become 
incoherent. 

In practice, it is iMpossible to consider 
calculating all of the interactions in Fig. 1 at 
once. Most calculations take account of only one 
or two of the connections, and, in fact, consider 
some of the enerGY llowo to be unidirectional. 
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We will truncate the diagram as far as is 
reasonable for our purposes. He keep the two kin­
etic energy boxes and the deflecting mode energy 
box and the interactions connecting them. Fur­
thermore, we consider the longitudinal velocities 
to be prescribed functions of time. 

The discussions of the next two sections 
differ only in the models they assume for the 
deflecting mode. 

III. Deflecting Mode Buildup in a 
Chain of Independent Cylindrical 
Cavities. 

The normal modes of the electromagnetic 
fields and their interaction with the beam can be 
described in complete detail for the cylindrical 
cavity with no holes or drift tubes. For numeri­
cal orientation and because it will lead to some 
physical insight, we do so now. 

A. Beam Current as the Source of the Field 

The vector potential A(r,t) is the solu-
tion of 

(in which j (;,t) is the beam current) which sat­
isfies metallic boundary conditions on the conduc­
ting surfaces; 

B.L = Ell = O. 

Band E are the fields derivable from A by 

.... 
B V' X A 

OE 2 -~ .... 
Ot = c V' X B. (3) 

A formal solution of Eq. (1) is 

f .... -, 1-: .... ' I .3 I I 
- ~o G(r,r;t,t )J(r,t )d r dt , (4) 

where the Green's function satisfies 

2 -. -t, I 
o G(r,r ;t,t ) 

with metallic boundary conditions. A Fourier in­
tegral representation 

........ , , 1 r~ ........ , iw(t-t') 
G(r,r ;t,t ) = 2IT J~G(r,r ;w)e dw 

C 

(6) 

defines G, which satisfies 

The contour C in Eq. (6) will be chosen so as to 
make G a 9ausal function; i.e., it will vanish 
for t < t • 

B. Normal Modes of the Cavity 

A set of scalar functions G (;) satisfying 
w 

(8) 

facilitates an explicit expression for G, namely, 

(9) 

provided that 

L}w(;) G:(;') 
w 

J d3
r G:(;) 6 , 

w,w 
(10) 

and that G satisfies appropriate boun~ary condi­
tions. The transverse components of j .... can be 
neglected for our purposes; therefore A = (O,O,Az ) 
and we require 

OG 
w 

° at r 
0cP = a 

02G 020 
w w 

° at z 0,-1.., (n) 
~ 0qXrZ 

where r, ~, and z are cylindrical coordinates in 
one cavity, and a and -1.. are the radius and length 
of a cavity, respectively (See Fig. 2). 

A set of G's which complies with these 
specifications is 

provided that 

(12) 

(13) 
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4 1 
--2 2 
nta J.,.+l (ne.,.t) 

k,.,. 0,1,2, 

t 1,2,3, 

1 

1+0 
k,o 

1 

1+0 .,.,0 
(14) 

and ne~t is the tth root of the .,.th Bessel func­

tion of the first kind. (J (ne t) = 0) w is 
~ ~ '0 

arbitrary. 

Explicitly, then, (compare Morse and Fesh­
bach) p. 126.5) 

~-+-t, 

G(r,r ;w) 

x (15) 

The electric and magnetic fields derived from a 
according to Eq. (3) are 

I3z 0 (16) 

e
r 

c
2 ~ n:~t cos ~(cp..(jlo)sin~ <cp~tr) 

e 
cp 

e 
z 

c:~ '¥- sin ~(cp-<Po)sin~ J~ (np~tr) 
2 e t ~ )

2 

c -+ cos 

where we have omitted the normalization factor 

A~kt 

If we consider the effects of the deflec­
tion modes ~kt individually, then we can drop the 
sum in E3' (15), and the fields induced by the 
current .j will be proportional to those given in 
Eq. (lG). 

C. The Fields Deflect the Beam 

Panofsky and \venze14 have shown that the 
effective radial force exerted on a beam bunch 
during its traversal of a cavity is 

where e is the total charge of the bunch, r is 
its position, tl its mass, Vs its longitudin~l 
velocity, and G is a vector potential which 
generates the electric field according to 

OG -or (18) 

Such a potential c~n be obtained from E~. (4) by 
replacing the~Gw/(r) in Eq. (9) with - e/(iw)2 
and chansing J to .i z ' Then Eq. (17) becomes 

(19) 

x 

This is the equation which determines the bunch 
deflection. 

The correct causal behavior and asymptotic 
time-dependence of the Green's function (Eq. (5» 
and the kernel in Eq. (19) is obtained by taking 
the contour C in both equations to be the real 
axis from - 00 to + 00, and displacing the poles 
at w = ~ wT into the upper half-plane to w = 
± wT + l~. This causes G to vanish for t < t/, 

2Q I 
and make~ it damp exponentially for t >>t • 

If we now substitute the current of a per­
fectly bunched beam 

(20) 

into Eq. (19), and perform the wand r' integrals, 
we get 

x * ~ Uw (r I) V I ( t ') , 
T s s 

which, after using Eq. (lG), becomes 

_ Uir(t-t
/

) 

2Q 

(21) 
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2 2 
nta J~+l 

1 1 
~~ Je,o ~,o 

(22) 

This equation gives first-order blowup only for 
~ = 1. Now we integrate Eq. (22) over the time 
the sth bunch is in a particular cavity. Defin­
ing ts to be the time at which the sth bunch 
nasses the center of the cavity, we introduce the 
time variable T; 

t = t + T 
S 

z 
s 

V T + t/2. 
s 

The integral over the times that the 8th and 8 ' th 
bunches are in the cavity is then, for Q » 1, 

f f nkz nkz I 

dT dT' sin WT(T-T
/
) cos T cos ~ 

t t 
sin W (t -t I) -- -- Ts T I Tss VVI S 

(23) 
S S 

which introdu~es the usual transit-time factors 
0< T < 1. Henceforth we set Vs = VS' = v; 
T = sT I = T. Equation (22) then gives, for the 
t~ansve~se impulse imparted to bunch s during its 
traversal of the cavity, 

x"'"'" sin W (t -t I) e L....J T s S 
I 

S 

...(j) (t -t I) 
T s s 

2Q 

where Wc = n$c/a and ~ = c/WT• 

1 
~ k,o 

r I(t I), 
s s 

(24) 

D. Image Charges in the \"all and Energy Transfer 

FifSure 3 shows the electric field lines 

inside a long conducting tube with a line charge 
parallel to the axis. The lines are circles, 
terminating in an image line charge outside. The 
radial electrostatic force on each length t of 
line charge, containing e units of charge, and 
off-axis r units, is 

2 e r gr, (25) 

which defines g, the quantity in the first paren­
theses of Eq. (24). 

Some more of the factors in Eq. (24) can be 
understood in either of two ways. First, consider 
a station~ry charge e in a cyll~drical cavity, at 
position r. The potential at r is3 

cp(;/) _ 4e "'"'" cos ~(cp' -<p) 
- ne: ta2 L....J

kt 
J 2+

l
(n/3 t)(1+6 )(1+6

k
) 

o ~ ~ ~ ~,o ,0 

(26) 

x 

The radial force is then, keeping only the term in 
the sum which has the same symmetry as our deflec­
ting mode, 

- e ocp/or ' (27) 

These electrostatic analogies should not be taken 
too seriously, of course, because in the real 
system magnetic forces are usually dominant. 

Alternatively, the factors can be expressed 
in terms of stored energy and energy transfer. 
The time average stored energy for a vector poten­
tial given by Eq. (12) is 

w s 
(28) 

The energy transfer from the deflecting mode to a 
bunch is 

W = r Wi = fe e v dt, 
B s B z 

(29) 

the maximum value of which is 
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Therefore, 

C\'I~)2 
-1-1--

s (
W)4 2 2 

4g W; (~) J~~n(3) 1 
~ k,o 

(30) 

whirh is nearly identical with the coefficient in 
Eq. (24). 

The usual definition of the deflecting 
mode shunt impedance r~, 

c 

(32) 

enables one to write the deflection equation with 
rt/Q as the principal part of the coefficient, 
also. 

E. Discussion 

The deflections described by Eq. (24) may 
be looked upon roughly as follows. Consider that 
as each bunch passes through the cavity it induces 
an image charge in the wall, which subsequently 
oscillates and decays. The sth bunch then sees a 
coherent sum of the images of the preceding bun­
ches; their number limited either by Q or the 
pulse length, their phases controlled by the 
elapsed time and the displacement of the preced­
ing bunch. Resonance between the bunch frequency 
and ~ is not necessary for coherence; in fact, 
if the deflecting mode frequency is any integral 
or half-integral multiple of the bunch frequency, 
Eq. (24) vanishes identically! This rather sur­
prising fact may be understood in the following 
way. 

F. The TMllO Mode 

Although Eq. (24) is valid for all the 
deflecting modes (i.e. the TM modes with ~ = 1 
shown in Eq. (16); the TE modes do not deflect4) 
we will nm' take the TMIIO as an easily visual­
ized example. It has no transverse components of 
E anywhere, and a maximum of B on the axis. The 
deflection is therefore entirely due to the mag­
netic force; the energy transfer from the beam is, 
as always, due to the work done by the off-axis 
beam on the longitudinal E-field. 

A bunch s' which passes the center of the 
cavity at a time t s ' at which E is at its peak 
transfers a maximum amount of energy to the de­
flecting mode. This implies that the increment 
OEs' contributed by the bunch is in phase with E. 

Now, suppose a subsequent bunch s arrives an inte­
gral number of half-periods later; i.e., 

w (t -t ,) = nn, n = 1, 2,3, ... 
T s s 

Then, depending on whether n is even or odd, the 
contribution of s to E, OBs, will be in phase or 
180° out of phase with OBs " But, because the 
contribution OB , to B of bunch s' is 90° out of 
phase with oE I~ bunch S '''ill be undeflected by 
the contributrons of bunch s' to the cavity fields. 

The next step in the argument is to recog­
nize that OEs', being a field produced by a pre­
scribed current, is independent of the field which 
was already in the cavity when bunch s' passed 
through. Thus, the presence of the sin ~(ts-ts') 
factor in Eq. (24) is plausi81e, and exact reso­
nance between the deflecting mode frequency and a 
bunch frequency harmonic is, in fact, incompatible 
with beam blowup. 

IV. Deflecting Modes in Neigh­
boring Cells Coupled Together 

The model we have just considered can be 
generalized to include cell-to-cell coupling. 
Using an equivalent circuit approach, we will now 
derive the deflection equation for the coupled 
chain, and identify the coefficients by taking 
the limit of zero coupling and comparing with the 
results of the preceding section. 

Rather than considering the cavity fields 
in detail, we now assume that only one deflecting 
mode is important, and take its amplitude in each 
cell to be the dynamical variables which describe 
the fielris. These variables can be identified 
with charges or currents in the equivalent cir­
cuit shown in Fig. (4). The coordinates describ­
inz the beam are still, of course, the bunch posi­
tions and velocities. The beam-equivalent circuit 
interaction must be chosen in such a way as to 
reproduce the form of the beam deflection equa­
tions obtained in Sect. III in the limit of no 
cell-to-cell coupling. 

A. Choice of Lagrangian 

A dependable way to get a consistent set 
of equations is to derive them from a Lagrangian. 
This we divide into 3 parts. First, for the 
chain of circuits, 

1 
2C ~) 

the choice is straightforward, as it is for the 
beam: 

£B = L ~ M (~~ + ~~) (4) 

s 

From Sect. III we know that the beam-cavity inter­
action depends linearly on the field, the bunch 
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velocity, and the bunch deflection. The simplest 
assumption for the interaction Lagrangian, then, 
is 

£ =L gm d '\n' CB m 
m 

where 

d Llm (z ) z x m s s s 
(36) 

s 

is the transverse moment of the beam current in 
the mth cell at time t, and gm is a coupling con­
stant proportional to the charge. Here ~(zs) is 
unity when the sth bunch is inside the mth cell, 
zero otherwise. The only choice we had to make in 
writing Eq. (35) was whether to use q or q. Com­
parison of subsequent equations with those of 
Sect. III determined that choice. 

B. Equations of Motion 

The whole Lagrangian is the sum of Eqs. 
(33), (34), and (35); the Eulerian equations 

d o£ 
dt~ 

yield the equations of motion for x and q: 

LOO + q /C +"" L a + ~ (d g ) 
11 11 L..J nm"1n . dt n n 

Mx 
s 

m 

0. (z ) z 
s s 

0, 

(37) 

(38) 

As before, our procedure is to eliminate the 
fields from these equations by solving Eq. (38) 
for ~ and substituting the result into Eq. (39), 
yield~ng the generalization of the deflection 
Eq. (24). 

A Green's function for the chain is de­
fined as the solution of 

(Ul~ _ 1) G ,(Ul) -""k GAUl) = 6 , 
Ul2 nn 'L..J nm ron nn 

m 

( 40) 

which satisfies boundary co~ditions appropriate 
to the nature of the end cells. Here we have 
put Ul~2 = Lf, knm = Lnm/Lo' For the case where 
Lnm only couples adjoining cells (i.e. knm = 
kOn,m±l) Eq. (40) is easy to solve for G in 
closed form. For our present purposes, though, 
the usual normal mode expansion is more convenient. 
He therefore define a set of normal modes by 

o 

Completeness and orthonormality require that 

n 

° , nn 

6 ,. 
qq 

The solution of Eq. (40) is then 

G ,(Ul) 
nn 

-2 L = Ul 
o 

q 
-2 

w - Ul 
-2 
q 

(41) 

(42) 

(43) 

which can be used to construct a solution of Eq. 
(38). After a change of variable to 

(44) 

it is 

g (Ul) 
n 

~2""G (Ul) g d (Ul), 
LUlL..Jnm mm 

(45) 

o m 

where 

d (Ul) 
m 

(46) 

C. Deflection Equation 

The longitudinal motion of the beam bunches 
is considered to be prescribed. That is, the 
functions 

v (t) 1 (z ) z (t) 
sm m s s 

= fv (Ul) e
iUlt 

dUl sm ( 47) 

are known. For the simplest case in which the 
bunches are points of charge with constant long­
itudinal velocity v and constant spacing vt

B
, 

.{.T / 
V (

Ul) B -iUl(st -mLv) 
sm =~e B , (48) 

in which 
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sin tw/2v 
t ill/2v 

will be part of the transit time factor. 

Now Eq. (45) becomes 

(49) 

S (ill) 
n 

1 
- --2 

Lill 
o 

~G (ill)g fv (ill-(J)')X (ill')dill', L.J nm m sm s 
s,m 

(50) 

and Eq. (39) can be written in terms of its Four­
ier components as follows: 

L MaPx (ill) = -~g fdill'v (ill-(J)') ~ G '(ill') 
o s L.J m sm L.J mrn , 

m m 

Xg, V"ill-ill X'ill dill, L:J (' ") (") " 
m s m s , 

s 

where we have substituted q = S from Eq. (50). 
This is the deflection equation, to be solved for 
x • 

s 

D. Graphical Interpretation 

As before, a proper cho}ce of pole dis­
placement and contour in the ill integration will 
insure that causality is satisfied and that energy 
is dissipated in the cavities at the proper rate. 
Figure 5 shows space-time tracks of a sequence of 
bunches, and the interaction of one bunch with 
another via the deflecting mode, according to Eq. 
(51). A bunch s' in cell m', oscillating trans­
versely with frequency ill" combines with the com­
ponent of the longitudinal time structure of the 
beam with frequency ill'-(J)" to excite a deflecting 
mode with frequency ill'. This deflecting mode 
then propogates from cell m' to cell m (via Gmrn '), 
combines again with the longitudinal structure 
of the beam (vsm ) to excite another frequency 
component of the displacement of the sth bunch in 
cell m. The process can then be repeated, corres­
ponding to an iteration of Eq. (51), which is one 
way to proceed to obtain the solution of the in­
tegral equation. 

E. Further Reduction 

Now we denote by 

t = st + mL/v sm B 

the time at which the sth bunch passes the center 
of the mth cell. Then, if we take the inverse 
transform of Eq. (51), use Eq. (48), and inte­
grate both sides over the time interval the sth 
bunch is in the mth cell, we get 

x e 
im'(t -t,,) 

sm s m 

G '(ill') 
mrn 

x ,( t , ,) 
ssm 

for the momentum transferred in the mth cell to 
the sth bunch (up (m)). 

s 

There are two cases in which it is easy to 
proceed further in the analysis. First, if all 
the frequencies of the chain of cavities are 
equal (au = illO)' corresponding to zero bandwidth 
or no cerl-to-cell coupling, then, by Eq. (43) 

G '(ill) 
mrn 

-2 
= ill o 

Ii , 
mrn 

-2 -2 
ill - ill o 

and Eq. (53) should become equivalent to Eq. (24). 
We can then establish a correspondence between 
our circuit parameters and those of the cylin­
drical cavity. 

Upon insert inEl 
and performing the ill 
placed into the upper 
Eq. (53) becomes 

Eq. (54) into Eq. (53), 
integral with poles dis­
half-plane as before, 

Clp (m) 
s 

( 'T ) 2 -ill (t -t ,) 
~ Bg L 0 s S 

---::-"-- ill sin ill (t -t ,)e 2Q 
Lo 0 0 s s 

s'<s 

(55) 
x x ,(t ,) • 

s s 

This equation is identical with Eq. (24) if g is 
chosen to be that function of the cavity geometry 
which makes 

(W,)2 
B 

-W--
s 

The other tractable situation occurs when 
the modes wq are spaced sufficiently far apart 
(~ > illq/2Q) that only one at a time contributes 
Significantly to G. Then 

* 
G , = ill-2 ~q) ~~) 

mrn 0 -2 -2 (57) 
ill - ill q 

and the XiS, for convenience taken to satisfy per­
iodic boundary conditions in a chain of length N, 
are 

N-l/2 iqm 
e , (58) 
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with q = 2n/W, 2 • 2n/N, 3 • 2n/N ••• 2n. Now 
Eq. (?3) becomes 

Clp (m) 
s '"'" sin ill (t L..J q sm 

- t , ,) 
s m , , 

m ,s 

-ill(t -t,,) q sm s m 
X e 2Q iq(m-m') (t ) 

e xs ' s'm" 

where the sum is restricted so that t > t , ,. 
sm s m 

F. Phase Coherence 

Equation (59) contains two sums, one over 
cell number, one over bunches. Crucial to the 
phenomenon of bea~-blawup are the questions of 
whether the terms in these sums add coherently or 
cancel one another, and whether coherence in one 
section precludes coherence in the next, where 
the structure is slightly different. To facili­
tate discussion of this point we expand x , as 
follows s 

(60) 

He can now carry out the m', s' sums; the result, 
however, is complicated. Its significance lies 
in the fact that they are small unless 

cr ± ill t = 0, ± 2n, ± 1m,... ( 61) 
q B 

to within about n/(Number of bunches in pulse) or 
n/Q, whichever is bigger; and 

~ - q ± ill L/v = 0, ± 2n, ± 1m,... (62) 
q 

to within n/(Number of cells in a section). A 
component x(cr,~) for which these criteria are 
satisfied will be amplified on passing through 
the section, and the pulse structure will acquire 
wiggles. Because the blowup length is always 
large compared to a section length, ~ is always 
small compared to q. A snapshot of the pulse will 
show modulation in the bunch displacements built 
up of wave numbers cr satisfying Eq. (61). If the 
same cr is not favored by successive sections, x(cr, 
0) will die out and no blowup will occur. Figure 
6 is an attempt at elucidation of the situation. 
The fuzziness of the q-criterion Eq. (62) is trans­
lated into a spread in the phase velocity (slope 
of diagonal line) of a few percent. The illq-cri­
terion Eq. 461) is much more stringent - a few 
parts in 10 ,say. x(cr,o) ,vill blow up if a long 
enough string of successive sections have modes 
in their deflecting bands which lie on the ill = illq 
line with phase velocities within the fan cen­
tered on the bunch velocity in Fig. 6. Whether 

or not this will happen depends on how the modifi­
cations in the structure from section to section 
shift the deflecting mode dispersion curve. 

G. Discussion 

Small bandwidth is obviously good; there 
can be no blowup in a chain of uncoupled cells 
unless the variation in structure is very small 
indeed. For fixed bandwidth a change in shape or 
shift in frequency would be beneficial if long 
series of consecutive sections were thereby pre­
vented from cooperating in amplifying a component 
x(cr,O) of the deflections. Blowup can also be 
suppressed by adjusting the deflecting mode fre­
quency to be at or near an integral multiple of 
the bunch frequency, as discussed in Sect. III F. 
It must be very near indeed, however, for,sup­
pression to occur, because the sum over s in 
Eq. (59), if Eq. (61) is satisfied, is propor­
tional to the number (R) of terms it contains 
unless illqtB is within R-l of a multiple of n. 

Our blowup Eq. (59) as yet contains no 
focussing force, which has an important effect 
and should be included. Equation (59) (or Eq. 
(24) in the uncoupled case) does not lend itself 
readily to solution by the usual meansl ,5 because 
the presence of the sine factor in the sum makes 
it hard to justify the replacement of the latter 
by an integral. 

f Work performed under the auspices of the U. S. 
Atomic Energy Commission. 
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DISCUSSION 

W. M. VISSCHER, LASL 

MILLS, MURA: None of the theoretical discussions 
of beam breakup have included the electron parti­
cle dynamics to the extent that they treat the 
effects of transverse velocity spread, or what is 
usually called Landau damping. In circular 
machines, Landau damping has been effective in 
suppressing these instabilities. On the other 
hand, circular machines already have strong 
mechanisms which produce velocity spread. It may 
be that a relatively small correction to the 
transverse focusing fields, say by octupoles, may 
produce striking effects in the linac beams, 
which are practically devoid of transverse veloc­
ity spread. 

PANOFSKY, SLAC: I believe that Landau damping 
herc would be analogous to calculating the ef­
fect of introducing octupole lenses, which I be­
lieve Loew referred to. This would destroy the 
phase coherence between particles starting at 
different radii. A computer program for this 
calculation is being written by Herrmannsfeldt. 
However, initial indications seem to show that 
these octupoles do not do as much good as the 

n-I n n+1 

back-of-an-envelope calculation would indicate. 
Another analogous effect which we investigated, 
is to use time-varying quadrupoles. For example, 
one may take a quadrupole, which is opposed to a 
regular quadrupole, but reverse its Sign every 
tenth of a ~sec. Hence, the magnetic field would 
be reversed ten times during one ~sec pulse. Dr. 
Helm programmed this effect into his calculation 
and obtained some improvements. However, they do 
not seem large enough to make this solution look 
very interesting from a practical point of view. 
We will look further into the octupole problem. 

HELM, SLAC: I think the whole problem on both 
these nonlinear and modulated quadrupole mecha­
nisms is that you can't make a very big perturba­
tion in anyone focusing period. Another point 
on the analogy of Landau damping is that it re­
quires finite transverse phase [pace in order to 
give incoherent effect on the blowup interaction. 
We have finite transverse phase space, and when 
you put in a strong enough nonlinear element to 
do any good, it blows the beam up by nonlinear 
defocusing effects. In the circular machine, I 
think these effects work very well because the 
instability is taking place over many, many 
betatron wave lengths, while in our case we have 
an e-folding within a sector or so of the machine. 

Fig. 1. Energy flow among the 
various degrees of 
freedom in the linac­
beam system is shown 
by the solid lines. 
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Fig. 2. Uncoupled chain of cylinders with small holes as a linac model. 
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