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Introduction 

The classical type of beam blowup or pulse short­
ening which is observed in many short, high-current 
electron linacs1, 2 has been convincingly identified 2, 4 
as a regenerative interaction between the beam and the 
HEMll deflecting mode, 3 which is the next pass band 
above the accelerating mode. The backward wave char­
acteristic usually associated with the deflecting mode 
supplies a prompt feedback mechanism which can 
greatly enhance the rate of transient buildup. Several 
analyses of the starting current threshold and transient 
behavior of this phenomenon5 , 6, 7 and its analogue in 
proton linacs8 have been published. The starting cur­
rents are typically of the order of a few hundred milli­
amperes to a few amperes. 

In multi -section machines another possibility sug­
gests itself; namely, an initial transverse modulation of 
the beam might be amplified, by the same type of HEMll 
mode interaction, in each accelerator section. The 
many slight successive amplifications could lead to in­
stability even at beam currents conSiderably below the 
threshold for the free oscillations. In fact it has been 
observed in high current multi-section linacs such as 
the DESY injector9 and the Kharkov electron linac lO 
that the pulse shortening threshold decreases with dis­
tance down the machine. 

The beam blowup observed at SLAC, as reported 
by Farinholt et al., 11 occurs at a frequency within the 
HEM11 pass band but at currents at least on order of 
magnitude lower than the threshold for the regenerative 
oscillation. Evidently then this is a case of the cas­
caded amplifier mechanism. 

At the time the present work was begun, the author 
thought that a formulation of the blowup interaction in 
the SLAC structure would have to include a detailed 
description of the transient wave propagation. This is 
a complicated problem for several reasons: First, the 
structure is tapered to produce constant gradient in the 
accelerating mode.12 In the deflecting mode, as a result, 
there is a band of frequencies about 200 MHz wide, 
within which the phase velocity is synchronous with the 
beam somewhere in the 10 ft. section. Second, the 
synchronous frequency is very close to the 7r-mx\e 
where the dispersion is so great that a simple descrip­
tion of wave propagation, in terms of a well-defined 
group veloc ity, is not valid. 

In order to represent the dispersive effects at 
least approximately, the coupled-resonator model13 -17 
of the wave propagation was adopted. Because of the 
complexity of the problem, a computer solution was 
undertaken. 

As an intermediate goal in the development of a 
computer program, the case of wave propagation and 
beam loading in the accelerating mode was treated. 

At about this time real beam blowup was discovered 
at SLAC. It was soon realized that the essential prop­
erties of the blowup could be described in a simple way 
without using the coupled-resonator model, 1. e., by 
representing an entire accelerator section as a single 
short resonant cavity. 18, 19 However, it still seemed 
worthwhile to continue the present approach. The 

blowup version of the computer program can simulate 
both the single cavity and the coupled-resonator models. 

In the present work the affects of other propagating 
modes such as the HEM21 (quadrupole) and HEM12 
(higher dipole), and non-propagating fields (wake-field 
effect) are not considered. 

Formulation 

Coupled Resonator Wave Equation 

We wish to express the wave propagation and beam 
interaction in a chain of coupled cavities without impos­
ing explicit normal-mode constraints. Thus rather 
than employing an expansion in normal modes, we 
assume that the vector potential in the nth cavity (see 
Fig. 1) may be expressed, in Fourier-transform repre­
sentation, by* 

A = A (W)1f (r': w) n n (1) 

where IFn is a wave function, characteristic to the 
nth cavity. ** It is assumed that space charge and 
scalar potentials may be neglected. The electric and 
magnetic fields are defined in the usual convention 
by*** 

-+ iw ~ ~ ~ 
E = - c A, B = Ii' x A , 

and A is a solution of the vector wave equation 

--> w2 
--> 47r 

li'x li'xA - 2" A = c J 
c 

The coupled resonator wave equation, which is 
found by appropriate operation on the vector wave equa­
tion, may be stated as (see e.g., Refs. 14 and 15) 

2. 2 n-l n+l 
(wn + 21WO!n -w ) An -(Kn An _1 + Kn An+1 ) 

* 

47rc 
u 

n f 
cav. 

1*· J dV n n (2) 

The Fourier transformation is used in the opera-
tional sense: 

F(w) 
1 

27r 

00 

J f(t) e -iwt dt, 
-00 

f(t) = J F(w) e
iwt 

dw . 
c 

In order to conserve on definitions, it will be conven­
ient to use A(w) to deSignate the Fourier transform of 
A(t), etc. 

** --> 
More precisely, A should be expressed as a sum 

over a set of transversely orthogonal modes /Ann' Only 
one transverse mode need be considered at a time, so 
the mode index m is omitted. 

*** 
Gaussian Units are used. 
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where ,un is a characteristic parameter of the nth 
cavity, 

QI 
n 

w 
n 

2~ 
~ the loss factor 

is a parameter which expresses the coupling 
between the n±1 and nth cavities, 

is the beam current through the cavity, and 

u 
n J 1~~12dV = integral of lifil2 over the 

cav. cavIty volume 

The parameters of Eq. (2) are given formally by* 

2 
w 

n 

O! 
n 

2 
c 
u 

n 

2 
c 
u n 

f I Vx -~rldV 
cav. 

f[1~ x (VX ~±1) ] 
hole 

1 
u 

n 

~ 

where Ii = j c/2 7Twa the skin depth. Fortunately 
these parameters may be related to experimentally 
measurable quantities, as will be seen below, so that 
detailed solution of the vector wave equation is not 
needed. 

If we assume that the beam current is traveling in 
the +z direction at velocity v, so that in the time 
domain 

Jzn(r',t) = J(-;I,t- J dz/v) 

o 
(3) 

- 0 

then the Fourier transformed current density is 

J (r\w) = J (r\ w) e -iw(tn+ S!vn) 
zn 

(3') 

zn 

where tn = f dz/v 

o 

vn is the average particle velocity at the nth cavity, 
and s is the longitudinal displacement relative to the 
center of the cavityo Equation (2) then becomes 

2. 2 n-l n+l 
(Wn +2IWO'n- W )An -(Kn An_l+Kn An+l 

= 47TC -iwtn f ~* Je -iW1;/vndV u e 'rzn 
n ca-{. 

* See, e. g., Slater 14 and Bevensee .15 

(4) 

(5) 

Dispersion Equation 

Consider now the homogeneous part of the coupled 
resonator wave equation for a structure in which the 
parameters are longitudinally constant (wn' an' KR±1 
independent of n): 

(W
2 

+ 2iwO'-w
2
) A - K(A 1 + A +1) = 0 (6) o n n- n 

where the phySically plausible assumption (reciprocity) 

has been used. 
Equation (6) has solutions of the form 

where 

A _ e±inke 
n 

w2 + 2iwO' - w2 
= 2K cos kl' 

o 

and k1' is the complex phase shift per cavity. 

(7) 

Equation (7) is frequently used in describing the 
dispersion in simple coupled resonator structures; the 
coupling parameter K is essentially proportional to 
w2 for "magnetic" coupling and independent of w for 
"electric" coupling. 15 

The "pass band," for which kl' is predominantly 
real, is in the range 

if we make the usual small-loss assumption 

w 
o 

0' = - «~ . 
2Q 0 

It will be convenient to make the additional assump­
tions: 

(1) that the pass-band is narrow, i. e. 

I K/WoJ«Wo . 

(2) that we only need to consider frequency com­
ponents in or near the pass-band; e. g. , 

Because of the last assumption, we take the 
parameters w , O!, and K to be independent of fre­
quency over thg frequency band of interest. 

The dispersion equation now may be written in the 
approximate form 

w 0 + iO' - w =' S1 cos k1' (8) 

where S1 = half-bandwidth =' ~ . 
w 

o 
Equation (8) will be recognized as precisely the 

dispersion relation used by Leiss and Schrack20 in 
describing transient phenomena in Linac waveguides. 
The equivalent Brillouin diagram is shown in Fig. 2. 

Thus to the extent that Eq. (8) represents the 
actual dispersion curve, the parameters Wo and S1 
may be determined from the experimental Brillouin 
diagram. The loss parameter 0' (or Q) is commonly 
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found e. g., either by resonance width or attenuation 
measurements. 

Simplified Wave Equation 

If we apply the approximations of the previous sec­
tion to Eq. (5), the Fourier transformed wave equation 
becomes 

. 1 ( n-1 n+ 1 ) (w + 10' - w)A - -2 Q A 1+ Q A 1 n n n n n- n n+ 

27f C 

w'u 
n n 

-iwtn 
e f 

cav. 

-iw'l; /v 
,1'* Je n dV 'l'zn (9) 

where w' is some constant reference frequency in or 
near the pass-band; 

w' 
n 

n±1 
and we assume that an, wn, Qn ,and </in are 
essentially independent of w (i. e., the leading term in 
an expansion about w I should be used). 

We may now transform to the time domain by iden­
tifying the operator iw as a/at; the result is 

(~ + a - iw ) A + 1. (Qn -1 A + Q n+ 1 A )' at n n n 2 n n-1 n n+1 

27TC 

iwhun 
f zj,~n J(rl,t-tn)e-iWII;/vndV 

cav. 

(10) 

In describing the interaction of the wave with a 
beam of particles it will be convenient to introduce the 
local time defined by 

z 
n 

T = t -f dz/v 

o 

t - t 
n 

Then the wave equation may be written 

I( n-1 A n+1 /} + -21)Q 1(T+£/Vn)+Q A 1(T-£ v) n n- (l n+ n 

27fc 
iW'U 

n n f 
cav. 

Ij!i: J(r", T) e -iwl!;/vndV 
zn 

Alternately we could retain the quadratic form 
of the dispersion Eq. (7) and obtain in an analogous 

(11) 

(12a) 

way 

( 
a2 a 2) --+ 2a -+w A (T) aT 2 n aT n n 

- w' )1 Qn-1 A 1(T + ..L) + 
n n n- v 

n 

Qn+1 A (T _ ..L)I 
n n+l v

n
) 

47fc 
u 

n f 
cav. 

if! J(r\T -I;/v )dV zn n 
(12b) 

where now a real rather than complex representation is 
employed. The assumption that the parameters 
an' wn ' QR±1, etc., are independent of frequency is 
still implied, so that the wave equation in the form (12b) 
is also only a quasi-transient approximation, valid in a 
frequency band not too far from the reference frequency 
w' . 

The complex representation (12a), which is formally 
simpler, is used in the present work. 

Application to Accelerator Mode 

Formulation for Computing 

We assume that the longitudinal field in the accel­
erating mode is transversely uniform near the azis, 
i. e. , 

(13) 

and note that the total beam current is given by 

f J( L 1), T)d; d1) (14) 

cav. 

It will be convenient to introduce a new field vari­
able W n ( T) defined as 

W (T)e
iwIT iu) I f Azn (T + !;/vn) dl; n c 

cay. 

- f Ez (T + I;/v
n

) dl; (15) 

cav. 

That is, Wn is essentially the integral of electric field 
along an electron trajectory. Hence, the voltage gained 
by an electron passing through the nth cavity at time T 
is 

The complex voltage gain Wn(T) is assumed to be 
slowly varying in the sense that it changes by a negli­
gible amount during the time, £/vn' in which an elec­
tron passes through one cavity. 
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With the substitution of (13), (14) and (15) in 
Eq. (12a) the wave equation becomes 

where nn±l = _ i 
n- 2 

n+1 

L R; W/T)+ Sn(T) 

j=n-1 

F n nn±l + iw'Q/v 
"' e n 

Fn±l n 

Rnn ; -Qi -i(w' - w ) 
n n 

I(T)e-iw'T 

f ~ zn (0,0, S-) eiw's-/vnds­

cav. 

(16) 

(17) 

(18) 

(19) 

(20) 

The voltage gain of the kth beam bunch in passing 
through the structure is given by 

N 

Re L W n (ktb) eikw'tb (21) 

n=O 

where tb = l/fb is the bunching period and N is the 
total number of cavities. 

The beam interaction source term (19) may be 
written in the alternate form 

(19') 

by use of a standard definition of r n , the shunt imped­
ance per unit length. 

computer Program 

A program for numerical solution of Eq. (16) has 
been written. The computational method is a typical 
(4th order) Runge-Kutta integration of the differential 
equation with appropriate tests for convergence and 
selection of more or less optimum time step. The 
integration is found to become unstable if the time step 
is such that 

Physically, this limit is equivalent to the group propa­
gation time per cavity at the midband group velocity. 

Data input options provide for description of wave­
guide structures having arbitrary variations of the 
parameters from cavity to cavity. Arbitrary driving 
source terms equivalent to constant voltage of constant 
current generators may be simulated in selected 
cavities. These sources may be turned on and off at 
preselected times with either a step-function or expo­
nentially damped rise. 

Boundary options equivalent to mid-cavity or mid­
iris electric or magnetic shorting planes, or mid-iris 

"infinite impedence" planes, are provided. These 
conditions, expressed for example at the input boundary, 
are 

A_ 1(T) 

A_ 1(T) 

and 
A_ 1(T) o 

(mid-iris shorting plane) 

(mid-cavity shorting plane) 

(mid-iris" infinite impedence" 
plane) 

in which the + sign refers to electric and the - sign 
to magnetic planes. The boundary conditions at the 
output end are analogous. 

The beam model parameters include time on, time 
off, rise time, beam frequency, and beam current. 

Longitudinal dynamics are ignored in this program; 
the beam velocity is taken as v = c. Thus phase 
oscillations and possible longitudinal instabilities are 
not included. 

Typical Computations for the SLAC Structure 

The SLAC waveguide12 is a disc-loaded structure 
designed for approximately constant gradient when 
lightly beam-loaded. The operating mode is 2'if/3, 
traveling wave, at 2856 MHz. All the properties-­
group velocity, midband frequency, Q, and shunt 
impedance--vary practically linearly from input to out­
put. The total number of cavities per 10-ft. section 
is 86. Figure 3 shows the Brillouin diagrams corre­
sponding to several points along the structure and the 
following table summarizes the pertinent initial and 
final values of the parameters. 

Cav. No. Vg/c 

o .0204 
85 .0061 

32.0 MHz 
10.41 

Q 

14,170 
13,220 

r 

0.53 MrI/cm 
0.60 

The values of haU-bandwidth, rln, used in the com­
putation, are derived from the design group velocity, 
vg(n) , through the relation 

:;- rI Q sin kQ • 

Since the parameters vary adiabatically, we take 
rlR±l = rI(n±1/2). 

Figures 4 through 7 illustrate propagation of a step­
function driving voltage applied at time T = 0 at the 
input boundary. Note the appearance of increaSing 
group disperSion at large n (compare Figs. 5 and 6) 
and the ripples resulting from the filter response of the 
periodic structure. Some of the more persistent 
wiggles, which are especially prominant in Fig. 5, 
result from the fact that the pass-band becomes nar­
rower as n increases. Consequently, certain frequency 
components which are shock-excited by the step-function 
driving voltage are reflected from the 0- or 'if-mode 
band limit at some point down the structure, propagate 
back to the input where they are again reflected by the 
source boundary (constant voltage--i. e., zero imped­
ance) and thus set up standing wave resonances. Such 
resonances probably would be much less noticeable ina 
more realistic case with finite rise-time and source 
impedance matched to the guide. 

The appearance of a significant out-of-phase com­
ponent of the field (Figs. 4, 5, 6) results from a slight 
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error, of ~ O. 06 MHz, in entering the midband fre­
quency of the structure. As a result the wave is not 
quite synchronous at the assumed bunching frequency 
of 2856 MHz. 

l3eam Loading Example 

Figure 8 shows the voltage loss which is se1£­
induced in a SLAC 10-ft. accelerator section by a step 
function beam current of 60 rnA.. The waveguide param­
eters are the same as in the previous examples. 

The nominal steady state beam loading energy loss 
is ~ 2 MeV per 10-ft. section at 60 rnA pulse current. 

Beam Blowup 

Computational Method 

Formulation of blowup for computing. In the case 
of beam blowup, the field is presumed to be the HEMl1 
deflecting mode. 3 We consider a particular polariza­
tion, in the X-direction. Near the axis the longitudinal 
field is of the form 

A ?! A (T)i; 1j!(1) 
z n n (22) 

where <Jil) = ~7 evaluated at (0, 0, S). 

The beam current is given by J= p(xn-;' Yn-lI)I(T) 
where xn and Yn are the coordinates of the beam 
centroid, and the transverse extent of the distribution 
function p is assumed to be small. 

The right-hand side of Eq. (12), the beam inter­
action source term, now becomes 

27ric 
w'u 

n n f !* Je-iw'i;/vndV=_27ric F'*I(T)x (T) 
ljizn w' u n n 

cav. n n (23) 

where we redefine the cavity form factor as 

F' = f 1j!(1)(1;) eiwl1;/vndi; 
n n (24) 

cav. 

To introduce beam dynamics into the picture, we 
note that the canonical momentum gained by a particle 
in a (vector) electromaguetic field is 21 

~ 
c f aA

Z 
ax dz 

(e) 

and the displacement in the x direction is 

~x 

(the integral f 
(e) 

f (p - ~A ) dz 
x c x pz 

(e) 

is along a particle trajectory). 

It is usually assumed that the Ax term in Eq. (26) 
makes a negligible contribution to the displacement. 
This is certainly good in an impulse approximation 
through a short structure, but may not be valid in 

(25) 

(26) 

extended structures at low beam energies. For the 
present we neglect the Ax term and say with reserva­
tions that 

(26 ' ) 

We now introduce the definitions 

Gn(T)eiw'T == ! An(T + i;/vn)iJ!~)(1;) di; 

cav. 

x 
n 

X (T)eiW'T 
n 

P (T)e
iwIT 

n 

(27) 

(28) 

(29) 

Notethat(e/c)Gn(T)eiw'T is the transverse momentum 
gain per cavity for an electron at time T. As before, 
w, is a constant reference frequency and the functions 
Gn(T), Pn(T), and Xn(T) are assumed to be relatively 
slowly varying, e. g., do not contain frequency compo­
nents much greater than the pass band width. Combining 
Eqs. 23 and 27 with 12 and including the beam dynamiCS, 
we obtain the blowup equations 

in which 
n±l 

Rn 

n+l "Rj 
G.(T) - iC I(T)X (T) L.."nJ n n 

j=n-l 

i 
= - "2 

27rc 
- WI 

n 

F' 
n 

F'n±l 

IF~ /2 
u 

n 

nn±l e'fiW'£/vn 
n 

and Fh is defined by Eq. (24). The coefficient Cn 
may be expressed in the alternate form 

(30) 

(31) 

(32) 

(33) 

(18) 

(34) 

wn 
C =Q!r £--

n n t, n c (34') 

where r t is the transverse shunt impedance per unit 
length as defined by Altenmueller et al. 22 

Limitations imposed by complex beam dynamics. 
It is important to realize that the complex formu­
lation of the beam dynamics, used in the present work, 
contains the implicit assumption that the beam charge 
is uniformly distributed as a function of rf phase angle. 
If the beam is bunched at some frequency related to the 
blowup frequency in a ratio of small integers, then the 
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complex representation of x and Px is not valid. One 
such ratio occurs, in the SLAC case, at a frequency of 
4284 MHz (equal to 3/2 times 2856), which happens to 
have phase velocity of c at about 7.5 ft. from the begin­
ning of the 10 ft. structure. Experimentally, however, 
the SLAC blowup occurs at about 4140 MHz and compu­
tational results given in the next sections of the present 
paper indicate that the interaction strength becomes 
rather weak at frequencies much different from 4140. 
Thus although these interference effects still invite 
study with a formulation which takes them into account, 
the indications are that they will not be very important 
to the SLAC problem. * 

Another limitation of the complex representation is 
that non-linear beam transport elements such as sextu­
pole lenses cannot be included. Both this and the inter­
ference phenomena mentioned above would require, 
essentially, ray-tracing each beam bunch through the 
structure. A computer program now being developed 
by Rees and Herrmannsfeldt23 will be able to handle 
these effects, at least in the isolated-cavity blowup 
model equivalent to the Panofsky-Sessler formula-
tion. 18, 19 

computer Program 

A program for numerical solution of the blowup 
Eqs. (30), (31), and (32) has been written. The wave 
propagation program described in the previous section 
is used, with suitable modification of the interaction 
term ani simultaneous solution of the beam dynamics. 

Provisions have been made for drift spaces, 
focusing lenses, **and acceleration, by obvious general­
izations of the beam dynamics equations; namely, the 
effect of a thin lens of focal length f is 

Ll.P = - p X /f n zn n 

and the effect of a drift space (possibly with accelera­
tion, but without transverse forces) is 

zn+1/2 

Ll.Xn = P n f d1;/pz 

zn-1/2 

Data input options allow arbitrary configuration of 
drift spaces, lenses and acceleration. 

The effect of the blowup mode on the longitudinal 
dynamics is ignored. All beam particles are assumed 
to have the same longitudinal momentum, independent 
of time. 

Blowup Interaction Within the 10-ft. 
Accelerator Section 

Properties of the Mode 

Figure 9 shows typical Brillouin diagrams for the 
HEMl1 mode in different parts of the SLAC 10-ft. 

* See also the work of Gluckstern and Butler, 9 in 
which it is shown in a similar type of computation that 
the blowup is only enhanced by about a factor of two 
even in the "resonant" ca"e where wb = wn . 

** Solenoid focusing has not been included. This 
would introduce coupling between x and y motions and 
require fields of both polarizations. 

structure. The simple cosine dispersion curve, Eq.(8) 
shown for comparison, obviously does not fit the experi­
mental data over the entire band, especially at the input 
end. The problem may be treated in an approximate 
way by fitting the parameters wn and Q~ within a 
limited frequency range, and conSidering different 
frequency bands separately. This technique should be 
reasonably quantitative so long as we do not try to treat 
very rapid transients. 

In the following calculations a fit which is valid from 
about 4120 to 4160 MHz is used. This corresponds to 
the range of synchronous frequencies within about the 
first 25 cavities of the SLAC structure (see Fig. 9). 

The Q of the deflecting mode in a structure simi­
lar to the SLAC accelerator has been measured24 as 
approximately 10,000. The shunt impedance has not 
been measured directly. Evaluation of the integrals 
in Eq. (34), on the assumption of a simple TM110 
cavity mode, leads to values of rt/Q;::;:10 Q/cm. Indirect 
determination of rt/Q from the observed blowup, by a 
method mentioned later in this report, gives 
rt/Q ~ 12 ± 2 Q/cm. 

In the sample computations discussed below, the 
values used are Q = 10,000 and rt/Q :::::10 to 12 Q/cm. 

computed Resonances 

The experiments of Farinholt et al. l1 have shown 
that the SLAC blowup occurs at a sharply defined fre­
quency even though synchronism of the HEMl1 phase 
velocity with the electron velocity can occur over a 
band of more than 200 MHz. This blowup frequency 
has been identified as a standing wave resonance which 
occurs in the first few cavities of the SLAC accelerator 
pipe. That such resonances must exist may be seen 
from Fig. (9b), which shows that near the input end of 
the accelerator guide certain frequencies may be 
trapped between the 7r-mode stop band and the input 
coupler, which is a purely reactive load to the HEMll 
mode at a particular polarization. 

These resonances have been probed by a series of 
computer runs Simulating excitation of the accelerator 
guide by a beam having constant amplitude of trans­
verse modulation, at an energy high enough so that 
negligible deflection takes place. By comparing the 
transverse momentum impulse at resonance, with the 
impulse generated by a single resonant cavity of the 
same rt and Q, we can compute the effective inter­
action length. 

Figure 10 shows the field distribution at several 
of these resonant modes, and the following table lists 
the first five modes with experimental frequencies 25 

listed for comparison. 

computed 
Resonant 

Frequency 

4139.4 MHz 
4147.8 
4154.5 
4160.5 
4165.7 

Experimental 

4139.64 MHz 
4147.50 
4154.00 
4159.72 
4164.82 

computed 
Effective 

Interaction 
Length 

23.2 cm 
8.9 

11.2 
8.1 
8.1 

Suppression of Blowup Interaction by an External Load 

One obvious means of reducing the blowup inter­
action would be to couple the power out of the 
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accelerator guide into a matched load, using a coupler 
which is below cutoff at the accelerating frequency. A 
coumputation was performed simulating a characteristic 
impedance termination at about the third cavity. The 
effect was to reduce the induced transverse impulse and 
field amplitude by more than a factor of 10, more or 
less independent of frequency, from the value found at 
the dominant resonance (4139.4 MHz). In an actual 
experiment11 performed with a section of accelerator 
guide in which signals were induced by the partially 
blown-up beam of the SLAC accelerator, the load 
reduced the induced field by about a factor of 3. The 
uncertainties in performing the actual experiment were 
rather large. 

Regenerative Blowup 

A series of computer experiments have been per­
formed to investigate the threshold for regenerative 
blowup in a single section of the SLAC structure. The 
procedure was to apply a very short pulse of transverse 
modulation to the beam and note the subsequent growth 
or decay of the fields and beam deflections at various 
currents. 

Figure 11 shows the growth of the fields in the 
accelerator guide at 1 ampere pulse current under 
conditions approximating the SLAC injector; vic = 0.75 
at injection, with acceleration at 0.1 MeV Icm. The 
field distribution corresponds closely to one of the 
resonant modes of the initial part of the tapered struc­
ture' * and the natural frequency at which the blowup 
develops (4147.5 MHz) is quite close to the frequency 
of this resonance (4147.8 MHz). The small frequency 
shift of -0.3 MHz evidently corresponds to the 0Rtimum 
phase slippage between the beam and the wave4 , ,6 in 
this particular case. It is a little surprising that the 
natural blowup is not in the 4139.4 or the 4154.5 MHz 
modes, both of which have larger effective interaction 
lengths than the 4147.8 MHz mode. Presumably the 
low injection velocity (vic = 0.75) prevents the neces­
sary degree of synchronism with the lower mode, which 
occurs nearer the beginning of the guide. In the case of 
the higher mode at 4154.5 MHz, which extends further 
into the guide, the interaction is perhaps damped by the 
rapid increase in rigidity of the accelerating beam. 

Figure 12 shows growth of the deflection of the 
beam after passing through the interaction region, at 
several currents. Figure 13 shows the growth rate 
(inverse of e-folding time) as a function of current. 

Blowup in the Multi-Section Machine 

Analytic Predictions 

The blowup observed at SLAC as described by 
Farinholt et al. ,11 results basically from a mechanism 
whereby a transverse modulation of the beam, starting 
initially from some sort of noise, is repeatedly ampli­
fied in successive accelerator sections until eventually 
the amplitude equals the accelerator aperture and the 
beam is lost. 

The fact that the effect takes place at a unique and 
sharply defined frequency led Panofsky18 and Sessler 19 

to formulations in which the interaction in each accel­
erator section is treated as a single resonant "cavity" 
(actually, as we have seen, a standing wave resonance 
involving several cavities). 

* See "Computed Resonances," above. 

In Panofsky's formulation, the successive impulses 
imparted by each "cavity" are treated in a continuous 
force approximation, resulting in a blowup equation 
which in the terminology of the present paper is given by 

a a ax . 
(aT + a) az (Yaz) = - ICIoX (35) 

where 

C 
e 

2 mc 

Here y is the beam energy, L is the spacing between 
"cavities," 10 is the pulse beam current, Ao = 21Tcl wo' 
and £1 is the effective length of the resonant interaction. 
This result follows readily from the present blowup 
Eqs. (30), (31), and (32) if we take the reference fre­
quencyas w' = wO ' set the inter-cavity coupling terms 
equal to zero, and identify nL as z in the continuous 
limit. 

Asymptotic 18 and numerica1 26 solutions of Eq. (35) 
have been found. The asymptotic result is of the form 

! 3 . 16 1/3(/
z 

dz' )2/
3 

1 I X- exp :273 e
l1T 

(ClOT) ~ -aT-4"log....L.. 
2 yy(z') Yo 

o 
(36) 

To the extent that the decay term and the logarith­
mic term may be ignored, this implies a scaling law, 
in the case of constant acceleration, of 

for given amplification of X. Panofsky18 has estimated 
that an amplification of _e 20 could result with typical 
SLAC parameters. 

Panofsky also extended his equation to include 
fOCUSing but was unable to obtain analytic results except 
in the case of very weak focusing. It appeared, how­
ever, that an appreciable increase in beam current 
should be possible. 

The computer program has been used to probe the 
properties of the long accelerator blowup in the isolated 
cavity model, with emphasis on the improvement in 
beam current which could be expected from use of more 
and stronger focusing. 

Typical Results on Long-Linac Blowup 

Figure 14 shows the growth of the blowup in the 
SLAC machine as a function of time and distance, at a 
particular beam current, with no focusing. The 
starting condition is a constant amplitude of transverse 
modulation applied at z = O. The beam is accelerated 
from an initial 30 MeV to 16.25 GeV. 

In this computation and those which follow, not 
every individual "cavity" is included; instead, groups 
of several (4 to 16) accelerator sections are repre­
sented by a single cavity of appropriate effective length. 
The saving in computer time is impressive and the 
accuracy of the computation is found to be affected 
very little. 

Determination of Effective rtl',IQ 

An experiment was performed by R. Miller 
(reported by Farinholt et al. 11) in which the amplitude 
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of the transVL'rse modulation was measured as a 
function of beam current and distance along the accel­
erator. By simulating thc same experiment on the 
computer and fitting the results to the measured data 
it was possible to estimate (a) the parameter rt~I/Q 
and (b) the amount of amplification required to produce 
pulse shortening. This is possible because the only 
sensitive unknown parameters in the experiment are 
(rt(IIjQ) [see i.e., Eqs. (30), (31), (32), or Eq. (35)], 
and the initial amplihlde of X. * 

As a result of this calibration it is found that 

280 -t 50 ohm/l0 ft. section 

Use of the effective interaction length of 23 cm (sec 
''Computed Rcsonances ," above) then gives 

r/Q ~ 12 ± 2 '2/cm 

The amplification from the 30 MeV point (beginning of 
Sector 1) to produce pulse shortening at 1. 5 Msec is 
found to be in the range of 1 . 10 6 to 2.;)' 107 with a 
nominal value of 4. 10 6. (Figure 15.) 

Improvement of Beam Current by Focusing 

The SLAC focusing system 27 at present consists of 
a quadrupole multiplet lens at the end of every sector 
(333-1/3 ft.) and an additional weaker lens at the 40 ft. 
point in Sector 1. 

From the point of view of blowup suppression we 
would like to set :111 the lenses for maximum admittance 
of the system, corresponding to focal length of a half­
sector (4 lenses per betatron wavelength). That is, 
because of the relation 

multiplet focal length ~./ /I~ 

where IQ is quadrupole current, we should taper the 
quadrupole currents in proportion to beam energy. 

The present lenses can be run at strengths corre­
sponding to maximum admittance at energies of up to 
only about 7 GeV, or 1/3 of the machine. In the paper 
of Farinholt et al. , 11 a plan for up-grading the focusing 
system is outlined. In Phase I of the plan, provisions 
will be made for continuing the maximum admittance 
lens setting throughout the machine. Phase II calls for 
additional lenses in the first part of the machine, at 
closer spacing. This will allow stronger fOCUSing in the 
low energy region where the rate of growth of the blowup 
is most rapid. 

Figure 16 shows schematically the two phases of 
the quadrupole plan. Figure 17 illustrates the sort of 
beam current improvement to be expected on the basis 
of the computer calculation. The Phase II model 
assumed for these computations has 4 multiplet lenses 
per sector for the first 6 sectors, and one per sector 
thereafter. The improvement factors appear to be 
about 1. 6 for Phase I and 2.6 for Phase II. 

Improvement by RF Suppression 

The blowup interaction might be significantly 
reducerl, e.g., by use of external loads as discussed 
earlier in this report, or by tuning the structures so 

* The starting noise may depend somewhat on beam 
current, but this would bias the r/Q calibration only 
slightly because of the extremely rapid dependence of 
amplification on beam current. 

that the resonances would be displaced in some random 
or systematic manner from section to section. A com­
puter experiment was carried out, assuming that the 
interaction strength was decreased by a factor of 10 in 
the first two sectors. The beam current improvement 
factor in this case seems to be about 1. 25. 

Time Varying Quadrupoles 

Several computer runs were made in which some of 
the quadrupoles were modulated at frequencies of a few 
megacycles. The thought here was that, if the betatron 
phase of the transverse modulation could be shifted 
appreciably during the buildup time of the blowup, the 
coherence of the signal arriving at a given point along 
the machine would be partially destroyed. 

The computations indicated that this mechanism 
would be quite ineffective. The maximum reduction in 
blowup amplification obtained under physically realistic 
conditions was on the order of a factor of 2, as com­
pared to factor of ~ 106 required to produce pulse 
shortening. The beam current improvement would then 
be expected to be no more than ~ 20%. The problem 
is that, on one hand, it is necessary to introduce appre­
ciable betatron phase shift within each e-folding dis­
tance along the machine, but on the other hand it is 
impossible to modulate anyone lens by a very large 
percentage because the resulting over-or under-focusing 
would tend to make the blowup worse. Since the e­
folding distance under blowup conditions can be on the 
order of one sector or less, the ineffectiveness of this 
scheme is not surprising. 
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Fig. 1. Schematic representation of coupled cavi­
ty chain. The local coordinate system in 
the nth cavity is r' = (~, '7, n . 
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Fig. 14. 
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Growth of beam deflection during SLAC type 
blowup (isolated cavity modellb ). Condi­
tions: 10 =10 rnA; initial energy = 30 MeV; 
approx. uniform acceleration to 16.25 GeV 
final energy; Q = 10,000; rt11 = 2.5 Mn/ 
10-ft.section; no fucusing. (Note: One 
sector = 32 10-ft. sections.) 
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Fig. 16. Schematic layout of focusing schemes. 
Each point represents a quadrupole 
doublet. The ordinate is a measure of 
focal strength, proportional to quadru­
pole current. 

Fig. 15. Experimental determination of rti.l/Q and gain. The experimental points 
represent a measurement of blowup amplitude at T = 1.5 ~sec as a func­
tion of beam current and distance along the machine. It is assumed that 
Q = 10,000 but the exact value affects the result only 8lightly. The 
functional dependence of amplitude on (zI) is approximate. The value of 
rt£l/Q used in the computation is scaled to fit the shape of the curve; 
normalization then gives the gain required to amplify the initial noise 
to blowup amplitude (-0.8 em). The gain is based on injection at 30 MeV 
with constant amplitude of transverse modulation. 

BEAM CURRENT, MA 

Fig. 17. Amplification (gain) at sector 30 vs beam current 
for SLAC type blowup. Conditions: Injection at 
30 MeV with constant amplitude transverse modu­
lation; uniform accelerator to 16.25 GeV; T = 1.5 
~sec; Q = 10,000; rt£l = 2.8 ~rl/10-ft. section. 
Phase 0, I and II focusing schedules as in Fig. 
16. The curve labeled "rf fix" assumes suppres­
sion of the blowup interaction in sectors 1 and 
2. The circled point at 20 rnA near the "phase 
0" curve is essentially the maximum current which 
has been obtained experimentally. 
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