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PHASE-SPACE REPRESENTATION OF ABERRATIONS DUE TO LONGITUDINAL FIELDS IN QUADRUPOLES
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Introduction

In a certain number of practical arrange-
ments, the length of a quadrupole used for focus-
ing purposes may be comparable to its aperture.
This can happen for instance at the exit of a
short pre-accelerating column or in the first
focusing stages of a linear accelerator. We have
tried to represent 1n phase space the esituation at
the exit of a focusing system where the presence
of a longitudinal field and the coupling due to
aberrations may influence the beam behavior,

A. Two-Dimensional Approach

We start from the general equations of
motion
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and use the scaler magnetic potential
V=G [fyk(z) + %5 (x2 + y2) xyk”(z)]
The third order equations of motion become
then
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In these equations ki = %%, the other symbols are

self-explanatory. The term in k‘ results from the
force experienced by the particle when going
through the longitudinal field B,. The term in k”

translates the nonlinearity of the magnetic field
in the fringing region.
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and similar expressions hold for x', y and y'.
The 40 aberrations coefficients a .0 e8), aTe Te-

1
lated by 24 equations.

We have derived analytical expressions for
the 40 coefficients for a variety of cases such as
k(z) = const. plus a & kick, k(z) represented by
a bell-shaped curve, k(z) represented by a
straight line, etc. We have then written a pro-
gram which enablee us to calculate x,x’,y,y’ and
the exit of any system composed of quadrupoles,
taking into account aberrations and coupling.

This method proves to be at least 100 times more
rapid than the numerical integration of the equa-
tions of motion and also improves considersbly the
accuracy, particularly when a long system is con-
sidered,

Figures 1-5 show the results of the calcu-
lation as applied to a single quadrupole and to a
triplet. The numerical valuee are those of a
system actually used in the CERN-PS preinjection
channel. In Fig. 1 we have represented the beam
emittances at the entry of the system (quadrupole
or triplet). TFig. 2 shows the beam behavior in
the x,x’ plane (focusing plane) at the exit of the
quadrupole if one assumes for the characteristic
function k(z) a bell-shaped curve. Fig. 3 die-
plays the situation in phase space in the case
where k(z) is a rectangle and the particle gets a
6 kick at the ends of the quadrupole, eguivalent
to the action of the longitudinal field. Fig. &
represents the situation in the cdc »lane at the
exit of a symmetric triplet the characteristics of
which are indicated in the figure. In Fig. 5 the
corresponding situation hag been plotted in the
ded plane of the triplet. In all cases we have
assumed that the etarting ellipses (xo,x'o) and

(yo,yé) are independent and we have calculated all

final points x,x' by associating tc one point of
the (xo,xé) ellipse all points of the (yo,yé) el-

lipse; the same applies to the y,y’ plane,

A Tew remarks can be made in relation with
the results obtained:

a) All points asrociated to a given ini-
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tial point xo,xé are very nearly on a straight

line.

b) For a given initial point xo,x;, the

point of the (y ,¥y’) ellipse which leads to the
maximum displacéments Ax and fx’ is always the
same,

¢) If one tracec out the curve corres- ,
ponding to a given yo,yé one obtains in the x,x

planc very nearly an ellipse; the system behaves
therefore as a lens whose focusing pronertlc° vary
a¢ a function of the particular point Yo ,y which
has been chosen.

We have emphasized these properties in the
X x' plane; obviously, similar properties hold in
the y,y' plane.

d4) The emittance of the outgoing beam is
represented by the envelope of the preceding
curves; it iz seen that considerable beam blowup
as well as distortion occurs in both planes.

e) 'The beam blowup in the case of the
triplet does not seem to be essentially different
from that of a eingle quadrupole; apparently there
is at lecast a partial compensation of the aber-
ratione ineide a symmetric triplet.

Let us ctress again the fact that the cal-
culations apply to guadrupoles or to a system of
guadrupolee in which the lengths of the elements
are comparable to their diameters.

B. Tlour-Dimensional Approach

The two-dimensional representation shows
non-congervation of phase-space arca in the two
basic plance. However, it is not realistic to
reprecent coupling and the influence of aberra-
tiong in two planes which are supposed to be ini-
tially decoupled.

Obviously, the determination of the beam
behavior at the exit of the system by means of the
aberration coefficients and the basic correspon-
dence from xo,xé,yo,yé to x,x',y,y' retain their

validity, it is only the representation of the
phase space properties which muet be changed.
Moreover, the density distribution of the parti-
clee in phase space should be taken into account.

In the four-dimensional approach we try to
determine the domain D occupied by the beam at the
exit and the density distribution in D as a func-
tion of the domain D occupied by the beam at the
entry and the denelty dietribution in D . We then

consider the areas occupied by the beam in the
x,x’ and the y,y’ planes as the projections onto
these planes of the domain D in the x,x',y,y'
space. Similarly, the cross section of the beam
in a plane perpendicular to 0z is obtained by
projecting D onto the x,y plane.

Consider then a beam occupying at the entry
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of the system a domain D_ and let this domain bve
bounded by a closed surface

’ I .
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All points in DO can be described by
’ ?
< 0.
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Moreover, let d(XO,Xé,YO,Yé) be the four-dimen-
51onal phase space density in the neighborhood of

X SX,Y 1
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To ovtain the emittance of the beam in the
plane Xo,Xé for instance, we select a particular
point Xo = xo, Xé = xé and we examine the range
inside which we can take X and X;; thig range

can be determined by writing that the inequality
? 4
<
Y(xo,xo, YO,YO) 0
must have solutions in Yo and Yé.

The number of particles having excursion
between xO and Xo + dXo and slopes between xé and
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where the surface of integration So is determined

by the condition

Y(XO:XOI;YO)YO,) s0
with x_ and x’ Ffixed.
o] [

The two-dlmenclonal phase space density at
the point xo,x of the plane X X is therefore

s 7 ?
jjg d(xo,xo,Yo,Yo) ay dy’.
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A similar procedure may be used to calcu-
late the area occupied by the beam in the Y,Y’
plane at the exit of the system as well as the
denegity in this plane; finally one can determine
the cross section of the beam in a plane perpen-
dicular to the propagation axis.

As a particular case, concider a beam of
axial symmetry. With no more arbitrariness than
in the two-dimeneional approach (where the beam
is represented by an ellipse in its phase plane)
we may assume that the volume occupied in hyper-
gpace by the incoming beam is represented by the
hyper-ellipsoid

2 ’ 2 2 2 2
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fXo 28 Xoxo hX0 ! fYo & YoYo ! hYo E
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In other words, all the particles of the
bveam will have at the entrance of pystem ex-
cursions X Y and slopes X Yo so that

£° + 2 XX + X% £ + 22 YY +h Y- E 5 O.
o o0 o o oo [¢)
The projection of the hyper-volume on the
basic planes X,, X and Y Y are then the el-

lipses

X2 g XX +hX2.E=
o] o0 [o]
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The important point is now the following.
Being given that the coordinates and slopes of
any particle must satisfy Eq. (1), if ,one tekes
a point A on the boundary of the X ,X ellipse,

the area of which is nE/th-g , the only point
one can take in the Y Y to calculate the beam

behavior is the p01nt 0,0 (Fig. 6). If one tekes
a point B inside the X ,X ellipse and situated

on a similar ellipse of smaller area TC/y/fh- g2
(¢ <« E), one may associate to it in the plane
Y Y all the points inside an ellipee similar

to the limiting one and of area m{E-C)/vfh-g“.
Obviously, the same correepondence holds when
going from the YO, Y plane to the X X0 plane.

The basic independence and decoupling of
the initial two-dimensional emittencee disappesar
therefore in the four-dimensional approach.

At the entry of the system, the cross
section of the beam in a plane perpendicular to
the propagation axis may be obtained by projecting
the hyper-ellipsoid onto the plane XOYO. To this

effect we put X0 = X0 Y = yo and examine the

o
range inside which these guantities must be
chogen in order that Eg. %l) admite solutions in

X’,Y.
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The latter relation can only be satiefied if

hE
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The cross section of the beam in a plane

perpendicular to the propagation direction is
therefore a circle of radius

hE
R = I _7g2
and the slopes of the trajectories which limit
the beam at the entrence are given by
x!=-Ex v’

) h %o o~ % Yo

At the exit of the system the hyper-volume
representing the beam will no more be a hyper-
ellipsolid if one takes into account aberrations
and coupling., To calculate this volume we may
use the correspondence.

X =X(X,x,y, )
o’ 0’70’ o

_ oyt ’ [;

X=X (XO,XO,YO,YO)
'

Y = Y(Xo 5% 0P o4 )

Y=Y (xo,xo s Yo)

which we can write out explicitly if we know the
transfer matrices of the gyctem and the aberration

coeff1C1ents. We then solve this system for
X L,xY LY.
[o] O [ M+ )

X, = XO(X,X',Y,Y')

x(; = xé(x,x',Y,Y’)

Y = YO(X,X',Y,Y')

Y= Y'(X x4,1,Y%)

and substitute these values in Hq. (1). We thus
obtain an equation in X,X ,Y Y! which represents
the limiting surface of the bear at the exit,

The projections onto the planes X X and Y, Y’
yield then the two-dimeneional emittance= whlch
one looks for.

The numerical computations along these
lines are under way and the results will be re-
ported later.
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DISCUSSION

E, REGENSTREIF, Rennes

FAURE, Saclay: At Saclay, from Prof. Regenstrief's
studies, we have teken into account this kind of

aberration for the transport line between the pre-
injector and the linac. We were obliged to select
quadrupoles the length of which are twice the
diameter in order to keep the sberration factor of
the order of a few percent,

247



mm

fig, 1.
x' mrad

X mm

Proceedings of the 1966 Linear Accelerator Conference, Los Alamos, New Mexico, USA

-
€
o ] e
£ e.,.a/.u_
-~ in
x Tl s
- o) @x_ 1 o
3 o1 5“"/“,.
™~ <+
- 2.( Gmwp
)
of 2
" e BN
N ————— s —— 1 3% o
" u Q" * _4
. o
i U\
H : %
H \ =i
g 4 r_v
/ﬁ ' __..~
- TN
1

/
C;h_

Fig. 3.

Fig. 2.

248



Proceedings of the 1966 Linear Accelerator Conference, Los Alamos, New Mexico, USA

26-43 A

249

v,
-z ¥
oK 4
*¢ 31 oK
1
uuw X Gj 0l
T T
0S O wwoz
L oy
*
qS1 z.¢\.~¢ 279 IR E-TNER posw 02
o(xoh o\ w2y =y °%
7 wog= 11 6
A Je%s X
A wag =99 el
-0¢ .\;\‘d\ \—m\- Y ! ]
S ATIDS _ mm.m _
Ao H . —
e | -k ;
: - - . - —— e
~GZ O/o 00 J LT -y
~O0!x‘x ox b
! °K "*k
oaw K e
poaw, podu x



