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I. Introduction 

For most proton linear acceleratorsl 
currently operating or in the design stage, 
the injection velocity is in the range of 
0.03c - 0.04c (500 - 750 keY) and the 
initial phase, of "stable" particles (that 
is, particles that will be accelerated up to 
the final energy) is between - _600 and 
_ +300 • The transverse motion of each 
particle in the low energy region (say, below 
10 MeV) is strongly influenced (sin t 
dependence of the rf defocusing force) by 
the large (longitudinal) phase oscillation 
which, in turn, is affected by the trans­
verse motion through the dependence of the 
transit time factor on the transverse co­
ordinate. In the Lagrangian which describes 
the motion of the particle, these effects 2 
are contained in coupling terms of the form 

r2n (V-t )m, n, m • 1,2,3, .•• (1) 
s 

where r is the transverse coordinate of the 
particle and Vs is the synchronous phase 
around which the particle phase V oscillates. 

Recently, R. L. Gluckstern has investi­
gated analytically the coupling effect in 
protcn linear accelerators3-5 and, in 
conjunction with his work, a great deal of 
numerical calculations of the coupled 
particle motion has been performed by D. 
Swenson at Los Alamos and by R. Chasman at 
Brookhaven. 6 According to Gluckstern, the 
major effect of the coupling is an apparent 
increase in the (longitudinal and trans­
verse) phase space area.3 For example, if a 
beam is initially represented by an ellipse 
in the transverse phase space, it will 
become distorted and this distortion depends 
on the "history" of each particle1s longi­
tudinal phase oscillation. Consequently, 
the area of the transverse phase space remains 
constant (in the first approximation) for a 
single ~oint in the longitudinal phase space 
("fish") but will show an apparent increase 
for a group of different initial points in 
the "fish". Furthermore, this increase will 
be enhanced because of the misalignment 
errors in the focusing system.4 If higher­
order effects are taken into account, a 
single point in the "fish" (with zero area) 
will expand to a certain area and this in 
turn will introduoe an essential change 
(either an increase or a decrease) in the 
transverse area. 5 The essential change of 
areas due to the "feed-back" effect is 
usually smal15,6 (a few percent) and does 
not seem to be of practical importance. 

As has been emphasized by Gluckstern,3 
his analytical results have a number of 
inevitable limitations: 

1. Linear approximations for uncoupled 
motions. This is particularly serious for 
longitudinal phase oscillations.** 

2. Smooth approximation7 of the strong 
focusing system. The uncoupled transverse 
motion is characterized by the maximum am­
plitude and the frequency kt (. 2n/At where 
At i. the wavelength) only. The operating 
point in the transverse stability diagramB,9 
ie limited to a small lateral region near 
the lower (small kt) boundary. This is 
especially serious for (+) (+) (-) (-) 
arrangement of quadrupoles. 10 

3. Only the "asymptotic" value of the 
change in area is estimated and "local" 
behavior of coupling effects (before they 
become negligible) are hard to evaluate. 
An extensive numerical orbit computation 
which would utilize his analytical results 
as a guide has been suggested by Gluckstern 
for actual design works. 

The purpose of this note is to study 
the same problem from a different viewpoint 
which is based on the theory of the st~ong 
foousing system by Courant and Snyder.of It 
is intended to be complementary to 
Gluckstern's work and to serve as a possible 
bridge between his analytical results and 
more elaborate numerical calculations. Only 
the apparent increase of the transverse 
phase spaoe area is investigated, neglecting 
the "feed-baok" effect. The uncoupled 
transverse motion is essentially linear but 
the uncoupled phase oscillation is solved 
exactly by numerical calculations. Magnet 
misalignments and the small coupling between 
two transverse motions (x and y) through the 
longitudinal motion are entirely neglected. 
Numerioal example. given here are primarily 
for illustrating the method and should not 
be oonsidered as a design of practical 
accelerators. 

II. Periodic System 

In desoribing the transverse motion, it 
is customary to take the coordinate'x and its 
derivative x' D dX/dz as a function of z. 
However, when the particle is accelerated, it 
is more oonvenient to use x and Px & px', p 
being the momentum of the particle in units 
of moc. Equations of the transverse motion 
are 
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(dx/dz) • Xl • px/p(z) (2) 

(dp Idz) a pi • f(z,r)x + q(z)x (3) 
x x 

where f(z,r) and q(z) represent the rf field 
and quadrupole magnets, respectively. Since 
the "feed-back" effect is neglected, quanti­
ties for the longitudinal motion (velocity, 
phase, etc.) which affect f(z,r) and q(z) 
are all independent of (x,Px). Furthermore, 
one can usually neglect higher-order terms 
(in r) of f(z,r), 

f(z,r) ';; f(z,r • 0). 

Combining Eqs. (2) and (3), one gets 

px" + piX' = F(z)x 

where 

F(z) = f(z) + q(z). 

For a strictly yeriOdic system with the 
period L, F(z+L = F(z) and p\z+L) - P\z). 
One can easily follow the formalism of CS 
(Sections 2 and 3) to get the general 
solution of (5) in the form 

(4) 

(5) 

(6) 

x(z) • JW ~p~z) cos [~(z) + 6] , (7) 

px(z) --[JW/~plz)~{sin [~(z) + 6] 

+ ap cos [ro(z) + 6]} (a) 

with arbitrary constants Wand 6. In oatrix 
notation, 

one is particularly interested in the matrix 
Mx(z) :; :iii (z + Liz) which describes the 
particle motion through a whole period, 

Y(z + L) • !II (z)Y(z) x , (10) 

. [ '" ~ + a p sin \01, ~p sin 

:J 11 (z) (11) x 
-Yp sin \01, cos ~ - a sin p 

where a ;; a (z) etc. and the (transverse) 
phase a~vanc~ ~ is related to the frequency 
kt by 

rz+L 
\01 m J dZ/P~p. ktL • (12) 

z 

Betatron oscillation parameters a , ~ and y p p p 

are slightly different from corresponding 
parameters in CS: 

2 
~PyP - ap - 1 

~~ 2ap/ p , 

a' = - {3 F - Yip p p ~ F -p (1 + a~)jp~p' (15) 

y' - - 2Fa (16) p p 

z 
qJ(z) • f dz/p~ 
. 0 p 

(17) 

\01 .. cp(z • L) (la) 

It is clear from Eqs. (7) and (a) that the 
quantity 

Way (z)x2 + 2a (z)xp + ~ (z)p2 (19) 
p p X P X 

is a constant of the motion. If a beam 
occupies the elliptic shape given by (19) in 
(x,px) phase space at z, it occupies a 
different ellipse (corresponding to different 
values of ap ' ~ , and yp) at other points 
but the area ~wPremains constant. After one 
period, at z + L, the shape is back to the 
ellipse (19). 

III. Adiabatic Invariant for ApproximateLy 

Periodic System 

In the actual linear accelerator, 
especially at low energies, the momentum p 
and the function F(z) are not strictly 
periodic. The particle is continuously 
accelerated and the parameters of the focus­
ing system vary from one period to the next. 
In the stability diagram of Smith and 
Gluckstern,a the operating point oscillates 
laterally with the longitudinal phase oscil­
lation. Also, it may move vertically, as the 
particle is accelerated, in accordance with 
a particular choice of magnet parameters 
through the accelerator.9 The quantity W, 
Eq. (19), is no longer a constant of the 
motion, its value changing from period to 
period. However, when the deviation from 
the strict periodicity is small, that is, 
when magnot parameters change slowly and the 
frequency kt of the longitudinal phase oscil­
lation is small compared to the transverse 
frequency kt, it is still possible to find an 
adiabatic invariant, at least to the lowest 
order of the deviation. The derivation of 
this adiabatic invariant is given in Section 
3(d) of CS. (See also Ref. 11.) 

The quantity 'If defined by Eq. (19) can 
still be regarded as constant in each period. 
The change of this quantity from k-th period 
to (k + l)th period is, to lowest order of 
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the variation, 

[ 1lli'" ~ 
- (lla) - ~ a~ sin (2"'k +26k ) J . (20) 

where (llp)k - ~k+l - ~k' etc. and the sub­
script p of the betatron oscillation 
parameters is left out. The constant phase 
ok is defined such that, at the beginning of 
the k-th period, x and Px are given by Eqs. 
(7) and (8), respectively, with ~(z) - O. 
It is approximately equal to the total 
phase advance up to the beginning of the k-th 
period plus the initial phase 61' 

k-l 
6k • [t "'i] + °1 + Ct(ll~/~, ha/a) (21) 

i-l 

80 that 

When the operating point is near the optimum 
region ('" ~ x/2) for (+) (-) (+) (-) system, 
JoIi is practically constant and 

For a cavity with (N + 1) periods, the final 
value of W is related to its initial value by 

WN+l = WI {I - EN cos (2°1 + ~)}, (24) 

where 

En .. (C~ + Si)1/2 , ~ - tan- l (SN/eN), (25) 

N (ll~)k 
eN - t ---~--- cos (2~) 

1 k 

(26) 

At the end of the (N + l)th period, 

(28) 

Px - - (JWN+17~+1)(sin 9N+l 

+ ~+l cos flN+l ) 

with 

(30) 

Equation (24) is similar to Eq. (15) of Ref. 
4 when misalignment effects (Di) are ignored. 

IV. Effective Increase of Phase Space Area 

In the preceding section, the variation 
of the quantity W has been considered onl;y 
for a sin Ie artic e. Given initial 
conditions x z - 0 and Px(z - 0), or, 
equivalently [8ee Eqs. (1) and (8)], Wl and 
01' one can calculate the maximum possible 
amplitude Ixl~ax in the (N + l)th period 
from Eqs. (24) and (28), 

max. ~+l (31) 

where max. ~N+l is the maximum value of the 
parameter ~(z) in the (N + l)th period. It 
is assumed here that values of "'k, ak, ~k' and 
7k are already known for tne entire cavity, 
k - 1,2, ••• , N + 1.10,12 However, in 
the design of focusing systems for proton 
linear accelerators, one is more interested 
in the transverse phase space area occupied 
by a beam, that is, a collection of many 
particles with different longitudinal phase 
value •• 

The initial conditions of all particles 
of the beam with a e;iven area rr.Ws in (x,Px) 
phase space can be taken such that 

~here y • a and ~ are betatron oscillation 
paramet~rs !n the ~irst period [see Eqs. (13) 
- (17)] for the synchronous particle. In 
terms of Ws and the phase os' each point on 
the boundary can be expressed in the form 

x - JWs 

with 0 < ° < 2rr.. On the other hand, the 
same poTnts(x,Px) can be written in the form 
of Eqs. (7) and (8) usine WI and the initial 
phase 01 

(36) 
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where al and ~l are betatron oscillation 
parameters in the first period corresponding 
to a particular point in the longitudinal 
phase space. Particles that are distributed 
on the boundary of the ellipse CEq. (32) 
with equal sign] but correspond to a single 
non-synchronous point in the longitudinal 
phase space have in general different 61 ~ 
!i. Also, a single point on the ellipse 
represents many particles in the longitudinal 
phase space and each particle has a different 
set of (WI, 61)' From Eqs. (33) - (36), one 
can show that 

where 

£ - J(6~/~s)2 + O::[(5~/0s) - (6 et/ ets )J2 
(38) 

a - tan-leas (%! - !!)/(5~/~s)J 

(40) 

and 

(41) 

Combining Eq. (37) with Eq. (24), one gets, 
at the end of the (N + l)th period, 

with 

£ -

a - tan-l [(e sin a + £N sin ~)/(£ cos a 

l 
+ tN cos ~)j 

It should be noted here that, since the 
"feed.back" effect is neglected, all 
particles represented by a single point in 
the longitudinal phase space have the same 
values of e, eN' a, and~. Since they are 
initially distributed on the boundary of the 
ellipse (32) in the transverse phase space, 
the phase 58 varies frcm 0 tc 2n and the 
value of the quantity Wij+l ranges from 
Ws (1 - T) to Ws (1 + T). Particles that 
are inside of the ellipse simply correspond 
to a smaller value of Ws' From Eqs. (28), 
(29), and (42), it can be shown that, at 

the end of (N + l)th period, these particles 
are on a distorted ellipse (in the first­
order approximation) 

where 

- f 2) 
A - YN+l + t L(l - "N+l cos e 

+ 2"N+l sin e}/~+l ' 

H - "N+l + E (sin e - "N+l cos e) , (47) 

B - PN+l (1 - e cos e) , (48) 

and 

e - a - 2~+1 

+ er(60/p, 6a I 5P/Ps ' 5et) 

To the lowest order in e, the area of ellipse 
(45) is the same (nW ) as the initial value 
[Eq. (32)]. Sinoe t~e "feed-back" is 
neglected, the area should of course be 
strictly conserved. On the other hand, the 
ellipse is distorted and the maximum values 
of x and Px are affected by the coupling 
effect: 

x jl + e {(1_a2)cos e + 2a sin e}/(l+a2 ) 

(51) 

If one now oonsiders certain distri­
bution of particles in the longitudinal 
phase space also, one would get ellipses of 
the form (45) with different values of A, B, 
and H corresponding to different values of e, 
EN' a, aN, and ~+l' If phase oscillations 
are still important at this point, values of 
a, P, and Y would also be different. The 
original ellipse (32) is then transformed to 
a collection of ellipses (45), each having 
the same area nWs but with different orien­
tations and deformations. The net result is 
an effective increase in the transverse 
phase space area by approximately a factor 
of (1 + emax)' When phase oscillations are 
negligible at the end of (N + l)th period, 
parameters aN+l' PN+l, and YN+l are the same 
for all particles and the distribution of 
particles in the transverse phase space is 
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X2 + p2 - W 11 + - ) x - S \ Emax (52) 

where 

x • x/hN+l 

and 

V. Application 

In order to illustrate a possible use of 
the formalism given in preceding sections, 
a somewhat artificial linac cavity has been 
designed which is based on the MURA linac 
cavity calculations. The main characteris­
tics of the cavity area 

Frequency of the rf • 201.25 MHz 
Injection velocity - 0.04c (0.15 MeV) 
Final velocity - 0.144c (9.90 MeV) 
Total number of unit cells. 56 
Cavity diameter - 0.94 m 
Drift tube diameter - 0.18 m 
Bore diameter - 2.0 cm 
Total length - 1.18 m 
Average axial field Eo(n) - 1.40 

+ 0.012 (n-l) MeV 
(where n is the cell number) 

Transit time factor - 0.584 - 0.811 

The focusing system is (+) (-) (+) (-) with 
quadrupoles in all drift tubes (including 
half drift tubes at both ends) and their 
strength is given by 

H' (kG/cm) .. 0.282 (y/~) • (55) 

where y • total energy/m c2 and ~ • 
velocity/c at each magne~. The length of 
each magnet is taken to be one-half of the 
cell length. 

In each cell, the electric field on the 
axis, Ez(z,r-O), has been written in the 
form 

+ i e (n) cos (~nm z)} • 
mal m n 

with 

e (n) -m 

2 k 
t a

mk 
n 

k·O 
(51) 

and coefficients (a J m - 1-4, k - 0-2} 
have been obtained ~om numerical values of 
Ez(z, r-O} for n - I, 21, and 56. These 

values are results from MESSYMESH caloulations 
at MURA. For each value of n, two cells 
whose frequencies are close to 201.25 MHz 
have been used to get linearly interpolated 
values of em' Below 10 MeV, higher harmonic 
components in Eq. (56) [em(n) for m ~ 5] are 
very small and they can be ignored for beam 
dynamics calculations. The drift tube table 
has been prepared by an exact numerical 
integration of the phaee motion2 such that a 
particle with the velocity - 0.040 and the 
phase ~ at the injection keeps the same 
phase ~~ (mod. 2n) at the beginning of each 
cell. With ~o - - n - 0.48, the phase of 
the particle at the center of each cell 
varies from -0.44 in the first cell to -0.46 
in the last cell. This particle will be 
called the "synchronous" particle. Once 
Ez(z, r-O) is fixed [Eq. (56)]. it is eas~ 
to obtain E,(z, r~O), Er(z,r). and He(z,r) 
from Maxwell's equations. Betatron osoil­
lation parameters ap ' !p. yp. and ~p for 
each period (two cells have been calculated 
from Eqs. (10) and (11 where two independent 
sets of solutions Yl(z .. L) and Y2(z • L) 
can be obtained by numerically integrating 
longitudinal and transverse equations of 
motion. Since the "feed-back" effect is 
neglected in the formalism. the longitudinal 
equations of motion are independent of the 
transverse motion. 

Three points in the longitudinal phase 
space have been studied in addition to the 
synchronous particle. Their initial positions 
arel 

Synchronous Particle 

Particle 1 
Particle 2 
Particle 3 

67-0 (velocity - 0.04c1 
CP-~0--lt-0.48 

67=0, ~"cp-cpo - -0.408 
toy-O, 6cp .. 0.446 
6y .. 0, 6cp • 0.892 

Particles 1 and 3 are very close to boundaries 
of the stable area. The parameter ~p along 
the entire cavity for these particles is 
shown in Fig. 1 where one can clearly see the 
variation of ~ due to the longitudinal 
phase oscillatron. The quantity £ defined by 
Eq. (43) is given in Table I for Particles 
1-3 and the effective inorease in the trans­
verse phase space area at the end of the 
cavity is 24~0. For the synchronous particle, 
£ - 0 [Eq. (38)] and EN ~ 0 since 6~/~ and 
6a/a are very small for all values of k. 
[Eqs. (25)-(21)]. Therefore £~ O. Finally, 

Table I "'i::': 

Particle 1 Partiole 2 Particle 2 
PI 1.250 m 5.477 m 4.898 m 

al -0.02613 -0.03421 -0.02921 

E 0.1502 0.1316 0.2233 

a -0.01355 -0.04369 -0.01655 

tN 0.01641 0.00694 0.02603 

aN -0.1210 1.335 -1.1413 
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£ 0.2159 0.1~3l 0.2~57 

(~S)l - 6.~06 m, (as)l - -0.03284 

N .. 27 

values of the quantity £k' k - 1 - N (- 27), 
for Particles 1 and 3 are shown in Fig. 2. 
Since £ ~ £ + £k [Eq. (43)] and £ is given 
in Table I, one can calculate the effeotive 
increase in the transverse phase space area 
at each period. 
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:":":"Results given here and in Fig. 2 are for 
?articles with G 1 = 0 or IT/2. 

6.5 

6.0 

• Synchronoul Particle 
o Partlcr. I 
¢ Particle 2 
to Particle 3 

k (Period Numb.r) 

Fig. 1. Betatron oscillation parameter ~ (Eq. 11) 
for four particles in low energyP(0.75 -
10 MeV) cavity. Period number k is twice 
cell number since focusing magnet config­
uration is (+) (-) (+) (-). Initial po­
sitions are: 

Synchr. Particle b.y=0 (0.75 MeV), 
q> = -n-o.48 = q>o 

Particle 1: b.y=0, ~ = q>-q>o = -0.408 

Particle 2: b.y=0, ~ = 0.446 
Particle 3: b.y=o, ~ = 0.892 

k (Period Number) 

Fig. 2. Fractional change f!k (Eqs. 24 and 25) of 

quantity W = ~ + 2 oocp + ~p2 (Eq. 19) x x 
as function of period number. Cavity and 
particles are same as in Fig. 1. Effec­
tive increase in transverse phase space 
area at each period k is e ~ f! + sk where 
S = 0.150 and 0.223 for Particles 1 and 
3, respectively. Initial transverse 
phase angle 61 is 0 or n/2. 
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