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I. Introduction 

The usual approximation for treat
ing orbit dynamics in linear and circular 
accelerators is to consider the longitu
dinal and two transverse motions to be 
uncoupled and to treat the development of 
the corresponding 2 x 2 phase spaces in
dependently. It has long been recognized 
that the orbit motions are coupled. I ,2 
In linear accelerators che source of this 
coupling is the dependence of the rf de
focusing term in the transverse motion 
on the longitudinal phase2 and the depen
dence of the transit time factor in the 
longitudinal motion on the transverse 
position (these coupling terms arise 
from the same term in the Lagrangian). 
An effort to include the effect of these 
coupling terms to the two lowest orders 
was made 3- 5 in order to determine their 
influence on transverse beam size. Com
parison of these results with orbit com
putations6 ,7 indicated agreement for the 
lowest order term, but not for the term 
which would be resonant if the longitu
dinal and transverse oscillation fre
quencies were equal. 

The present report reviews the anal
ysis, yielding a result for the second 
order term which takes into account 
higher order terms in the first coupling 
term. This result now appears to be in 
general agreement with the orbit compu
tations 6 and can be used as the basis for 
predicting transverse beam growths due 
to this coupling. 

II. Growth of Transverse Oscillations 

The basic coupled equations for mo
tion in the longitudinal and one trans
verse direction, including only the first 
two coupled terms, are 

k 2 
1 d ( dy) + k 2 ~ ( x2) BY ds 81' ds t y = - 4 y 2gX + 

(1 ) 

(2 ) 

where g 'TTy/SYA . 

These equations differ from those 
in Refer~nces 3 and 4 by the inclusion 
of the X term in the equation for X, and 
by treating y as an actual displacement. 
The notation is: 

A = rf wavelength 

~s = synchronous phase « 0) 

X 

y 

k = 
~ 

81' 

~ - ~s 

transverse displacement 

2'TTeE T sinl~sl 1/2 
( 20 3 3 ), longitudinal 

mc 8 I' A 

oscillation wave number 

smoothed transverse oscillation 
wave number 

longitudinal momentum of the 
synchr~nous particle in units 
of mc. 

Equations (1) and (2) contain 
several approximations. These are: 

1) Only terms of order up to y2 are 
included in the Lagrangian. This appears 
to be valid for beam sizes currently con
sidered. 

2) The transverse oscillation, which 
is usually of the strong focusing type, 
has been smoothed. This should be reason
able for the present coupling effects but 
not for any coupling effects arising at 
magnet boundaries. 3 

3) Only terms of order up to X and 
X2 y2 are included in the Lagrangian. 
Stability limits are not correctly ob
tained in this approximation but the 
coupling effects will be consistent to 
the order shown. 

4) Only that rf wave component tra
veling with the beam is included. Inclu
sion of other components is equivalent to 
taking into account the velocity depen
dence of the transit time factor, which 
has little relevance to the coupling ef
fects. 

The solutions of the uncoupled 
linearized part of Equations (1), (2) in 
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the JWKB approximation ar~:3 

A
t

(Sy)-1/2
kt

-l/2 
s 

y sinCf k t ds + at) 
0 

(3 ) 

A (B ) -3/2k-l/2 
s 

X 1- Y 1- sine! k1- ds + a1-). 
0 

(4 ) 

In order to compare with numerical re
sults, we consider collections of points 
of fixed At, A1-, and distributed values 
of at, a1-. The most convenient coordin
ate systems for observing the motion of 
these phase points are the polar coor
dinates At, at and A1-, a1- which are 
equivalent to the Cartesian coordinates: 

y = y(By)1/2(S )-1/2 
SF 

y' = y'(By)1/2(B
Sp

)1/2 
(5 ) 

x = x(By)3/ 2k 1/2 
1-

-, = '(S )3/2 k -l/2 
X X Y 1- , 
where SSF is Courant and Snyder's B.l 
The uncoupled oscillations correspond 
to motions of phase points in circles in 
the coordinate systems represented by 
Eq. (5). Amplitude increases then appear 
as (elliptical) distortions in these 
coordinate systems. 

In the iterative scheme for solving 
Equations (1) and (2), the typical equa
tion will contain oscillatory driving 
terms of decreasing amplitude. Integra
tion of such an equation over the course 
of acceleration will then be done approx
imately and will only involve the start
ing amplitude, frequency and phase of 
the driving term. Specific damping vari
ations will not appear explicitly. To 
simplify the presentation, therefore, 
we shall ignore damping, except where 
necessary to discard terms at the end 
of acceleration. With this understand
ing we then write 

with 

(0 ) 
y 

(6 ) 

(1)" + k
2 y (1) 

k 2 
y(O)x(O) 1-y t - g 2 (9 ) 

(1)" + k
2 (1 ) (0 ) 2 

X X = - g k2(~) 1- 1- BYA 
(10 ) 

(1)" 
k 2 (1) k 2 

(0)2 
+ 1-

X 1- X g 2 X (11 ) 

2 
(2)" 2 (2) y + k t y g ~1-(y(O) X (1) + 

(12 ) 

(2)" 2 (2) 2 2 (0) (1) X + k, X = - g k ( __ TI __ ) 2y Y 
.. 1- BYA 

_ k2( __ TI __ )2 (0)2 (0) + k2 (0) (1) 
1- ByA y X g 1- X X . 

(13) 

We have here separated the x(l) con~ribu
tion into a part proportional to Yo and 
a part proportional to Xo2 and have 
treated the second order ter~s con~i~
tent~ The solutions for y,l), x,l) 
and x ll ) (which are defined to vanish 
and have vanishing derivatives at s = 0) 
are: 

+ 

k1- cos(t -2at + a1-) 

2kt - k1-

2kt cos (t + 1-) 

2kt + k1-

k1- cos(t - 2at - a ) 
~~~~ ______ ~ __ ~1-_ + 2 cost ] 

2kt + k1- cos a" 

( ) TIy 2 
X 1 = - ~(ay~) [1 + 

k 2 

-4-k"'2...:.1--_--
k

"'"2 cos 2t 
t 1-

(14 ) 

(15) 
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X(l) = g X02Cl + cos 2t ( 4 3 - cos t - at) 

2 

cos(t - 3a ) t 
6 ] . (16) 

The cos (t ~ t) terms in Eq. (14) and the 
1 and cos 2t terms in Eq. (15) decrease 
with increasing s, whereas the remaining 
terms are present only to satisfy the 
boundary conditions at s = 0 and repre
sent permanent deformations which persist 
at s = 00. These latter terms give rise 
to a change in transverse amplitude which 
comes only from the coefficient of sin t 
in Eq. (14): 

(1) 2 
I5A(oo) gk t 
~ 'V u;-::
A\Ui ok t 

The contribution of y(2) to the 
transverse amplitude change can similarly 
be calculated from Eq. (12). We shall 
here only evaluate the effect of the term 
which dominates for kt and kt almost 
equal. The result (which can also be 
obtained by the phase amplitude method 
of Reference 3) is 

(2 ) 
I5A(oo) 'V 

f:T5J 

(18 ) 

2 The factor proportional to g represents 
the contribution of the first order terms 
in Eq. (12) which was not previously in
cluded. 

The dominant term in the sum of 
Equations (17) and (18) is expected to 
be the first term in Eq. (17) unless 
kt - kt is particularly small. This term 
then represents, for a given at, an el
liptical distortion of the transverse 
phase space by a factor 

(19) 

with orientation such that the maximum 
transverse amplitude occurs for 

2at - a" = '11/2 . (20) 

If one now considers a collection of all 
values of a", the occupied phase space 
will consist of the superposition of el
lipses of distortion given by Eq. (19) 
with all orientations, and, for all in
tents and purposes, will appear to be a 
growth in the transverse amplitude by 
the factor given in (19). 

The situation is more complicated 
for the sum of Equations (17) and (18) 
since the distortion in general depends 
on at. However, the maximum distortion 
occurs for a value of at such that all 
terms are in phase. The maximum trans
verse amplitude growth is therefore 

o~ ("') I 
o max 

- 1 
(21) 

The result in Ea. (21) gives the 
transverse amplitude growth at the end 
of acceleration (after coupling terms 
are unimportant). One expects to see 
wider variations and oscillations during 
acceleration, and each term can be ex
pected to reach a peak approximately 
twice that represented by the individual 
terms in Eq. (21). Although these peaks 
will not occur at the same energies, a 
rough upper limit to the maximum distor
tion is given by twice the result in 
Eq. (21), namely, 

I5A
A

(S) I < 2 oA(oo) I 
o max - Ao max 

(22) 

III. Comparison with Orbit Computations 

Computations have been performed6 ,7 
to determine the seriousness of the 
transverse beam growth due to coupling 
with the longitudinal oscillations. 9 
Comparisons have been made, essentially 
with the forms in Equations (17) and 
(18) with the following conclusions: 

1) The main contribution to the 
effect comes from the first term in Eq. 
(17), as expressed in Eq. (19). For 
kt and kt equal at the start of accelera
tlon, <Ps = _26 0 and xo 'V 30 0

, Eq. (19) 
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predicts a 15% increase in amplitude at 
s = 00 and a 30% increase at some inter
mediate value of s, according to Eq. (22). 
This is the order of magnitude of the ef
fect observed. 

2) A Fourier analysis of the distor
tion in the variable a£ leads to excel
lent agreement with the two terms in 
Eq. (1 n . (The second term .is roughly 
1/3 of the first.) The agreement with 
Eq. (18) is not quite so good, primarily 
because of the difficulty in assigning 
an accurate value to 2kt - 2k£ in the 
presence of the highly nonlinear and 
coupled oscillations. The order of mag
nitude and sign of this term, however, 
appear to be correctly given by Eq. (18). 

3) The longitudinal wave number de
creases more rapidly than the transverse 
wave number. In those designs where kt 
starts out below k£, the two become 
equal at some intermediate value of sand 
the analysis in Section II is not appli
cable. Reference 3 contains a treatment 
of the resonant behavior for an assumed 
variation of k£ and kt and indicates the 
magnitude of Eq. (18) should be increased 
by a large factor if resonance takes 
place shortly after the start of accel
eration. Even in those cases where re
sonance does not occur, the rapid varia
tion of kt - k£ with s makes the result 
in Eq. (18) only approximate. For these 
reasons the magnitude and phase of the 
term proportional to x8 are used as 
parameters in fitting the computations. 
Indications are that the term in Eq. (18) 
depends sensitively on the starting value 
of kt in the design of the transverse 
focusing system, but that it is not as 
important as the first term in Eq. (17). 

IV. Application of Liouville's Theorem 

In the course of numerical computa
tions 6 ,7 to ascertain the seriousness 
of these transverse amplitude growths, 
it was noticed that the two-dimensional 
transverse projection of the four- or 
six-simensional phase space did not 
exactly satisfy conservation of phase
space area. For a distribution in all 
phase-space directions, this is not sur
prising and is just the effect predicted 
in Equations (17) and (18). For a 
single starting point in longitudinal 
phase, however, the transverse area ap
peared to fluctuate by several percent. 

The first order (in y~) results in 
Equations (17) and (18) vanish if one 
averages over all values of at for fixed 
a£. It now appears that higher order 
effects modify this conclusion. This 
section is therefore a re-examination of 
the conditions which apply in general 

and the extent to which the new notions 
affect the choice of beam aperture. 

The basic coupled equations for the 
motion in the longitudinal and one trans
verse direction are given in Equations 
(1) and (2). The following conclusions 
are apparent from these equations: 

1) For uncoupled motion all two
dimensional space trajectories are circles 
(ellipses) of constant area. The pro
jected phase-space areas are obviously 
conserved. 

2) If the right sides of Equations 
(1) and (2) are approximated by using the 
uncoupled values of y and X, the indi
vidual phase-space areas are distorted 
but retain their original values. How
ever, the distortions depend on the ini
tial values of the oscillations and for 
a distribution of initial values there 
will be an apparent increase in the pro
jected phase-space area. This is the 
situation discussed previously, and 
treated in Section II. 

3) If the uncoupled solution for X 
is used in Eq. (1), one obtains the 
equivalent homogeneous equation 

d ( dy) 2 ds l3y ds + l3y q y = 0 (23) 

where q2 is a known function of s. Once 
again phase-space area must be conserved 
in a particular two-dimensional projec
tion for a point in the other projections. 
(The determinant of the infinitesimal 
transformation is still 1.) 

4) If one includes in the X on the 
right side of Eq. (1) that part of the 
solution of Eq. (2) which depends on y, 
the arguments which lead to conservation 
of area no longer apply. It is this 
case which is explored now in greater 
detail. 

It is clear from Equation~ (17) and 
(18) that, to first order in Yo, the 
change in transverse phase-space area 
vanishes. In order to see w~ether this 
is true to second order in Yo, it is 
necessary to perform a more careful in
tegration of Equations (1), (2). We 
shall, however, accomplish this same goal 
by using the fact that the sum of the 
phase-space projections in the transverse 
and longitudinal projections remains con
stant. lO The longitudinal projection can 
more easily be calculated to second order 
since it starts as a point at s = O. In 
fact one can just solve Eq. (13) to the 
order shown to obtain the desired area 
change. 
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As in Section II, we shall include 
all first order (in Xo) terms and only 
those second order terms which are im
portant for kt almost equal to kl. The 
terms in Eq. (15) which persist at s = 00 

and which lead to a distortion from a 
point to an ellipse, are the last two. 
The terms on the right side of Eq. (13) 
which contribute for kt n~a~ kl include 
the cos (t - l) term of y~l) frQm Eq. 
(14) and the cos 2t term of x(l) from 
Eq. (15). After considerable algebra, 
one finds that the point in longitudinal 
phase space has become an ellipse of 
major and minor axes given by 

Try 2 k I 
(Sy~) ~ { 2k! - k~ 

(24) 

This ellipse is actually traversed twice 
as at goes from 0 to 2Tr. One therefore 
uses the Poincare Invariant lO to obtain 

and finally 

<5 Area(t) 

Area(t) 

(25) 

(26) 

The result in Eq. (26) gives the 
area change at the end of acceleration 
(after coupling terms are unimportant). 
One expects to see wider variations and 
oscillations during acceleration. If a 
particular term in Eq. (26) dominates, 
one will actually see oscillations which 
reach approximately double this value. 
If several terms are important, however, 
each will reach intermediate peaks at 
different energies and the situation will 
be more complicated. As a guide, one 
can assume that fluctuations will carry 
the area change to between -1 and +2 
times the value given by Eq. (26). This 
is indicated by the numerical calcula
tions. 

Equation (26) expresses the decrease 
in transverse phase-space area for a 
fixed starting point in longitudinal phase 
and a "matched" beam in transverse phase 
space. This must be included with any 
apparent increase in phase-space area due 
to a distribution of points in longitu
dinal phase space. It should be noted 
that Eq. (26) predicts an area change 
even in the absence of longitudinal os
cillation, a phenomenon observed in the 
numerical results. However, this area 
change appears to be substantially smaller 
than that due to the distortions discussed 
in Section II, and is primarily of aca
demic interest only. 

Numerical computations 6 ,7,9 illus
trate the area changes discussed here, 
although precise agreement has not been 
obtained for the term proportional to 
xO' Nevertheless the transverse area 
does decrease by the order of magnitude 
specified in Eq. (26), and the effect is 
clearly proportional to the square of 
the transverse displacement. Precise 
agreement is not expected because of: 

1) The possibility of contribution 
of terms for j > 3, and of terms of 
higher order in-x . 

o 

2) The fact that the values of k~, 
kt used in the denominators of Eq. (26) 
should be those appropriate to the actual 
longitudinal and transverse oscillations, 
not the linearized version appropriate 
to Xo = 0, Yo = O. 

3) The possibility of contributions 
from resonances of the form 2kt = jk~. 

4) The limited accuracy of the 
numerical calculations. 

One last point should be discussed. 
Courant11 has shown that a coupled dynam
ical system satisfying certain conditions12 
conserves the area of its two-dimensional 
projections along particular axes. In 
the uncoupled case these are the normal 
axes for the separate coordinates. In 
the coupled case these special axes are 
linear combinations of the longitudinal 
and transverse coordinates. The conclu
sions in this note, applying only to 
the simple coordinate axes, are therefore 
not in violaiion of the theorem proved 
by Courant. 

V. Summary and Conclusions 

1) Coupling of the longitudinal and 
transverse motion takes place through the 
phase dependence of the rf defocusing 
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force and the radial dependence of the 
longitudinal transit time factor. Both 
of these effects arise from the same 
term in the Lagrangian. 

2) The coupling forces decrease 
rapidly with increasing S. Consequently 
the seriousness of the effect depends 
primarily on the parameters at the start 
of acceleration. 

3) The main contribution to the 
growth in transverse dimension (and phase
space area) comes from the first coupling 
term in Equations (1) and (2). The 
prediction is for an amplitude increase 

oA(oo) 
ATOT 

k~ cot I<psi 

2(4k2 _ k 2 ) Xo 
t g, 

( 27) 

at the end of acceleration (actually this 
increase takes place within the first 
10 MeV of acceleration). The growth will 
be approximately twice as large in the 
course of reaching the final value in 
Eq. (27). 

4) For comparable kg, and k t at the 
start of acceleration, Eq. (27) predicts 
a 15 - 20% transverse amplitude increase, 
and a 30 - 45% increase in transverse 
emittance. The effect increases for 
lower kt (weaker transverse focusing) 
and suggests transverse focusing designs 
which make kt as large as possible at 
injection. 

5) The effect of that part of the 
second coupling term which dominates for 
small 2kt - 2kg, has also been taken into 
account, and the result is given in 
Eq. (18). Numerical computations of or
bits indicates that Eq. (18) overestim
ates the effect. The following consider
ations are relevant, however: 

a) For small 2kt - 2kg" one should 
use a resonant treatment,3 which 
leads to a finite result at 
k t = kg,. 

b) Equation (18) is sensitive to the 
actual values of kt and kg, used. 
For nonlinear coupled oscillations 
these will be different enough 
from the linear uncoupled values 
to make the prediction of Eq. 
(18) uncertain. 

c) There will also be contributions 
of order Xd and higher which have 
been omitted here, but which can 
be important. 

In spite of these uncertainties, 
Eq. (18) does predict a contribution to 

the distortion which has been observed 
in the numerical computations to be of 
the same sign and order of magnitude as 
predicted. 

6) If one considers a collection of 
starting points in phase space, each 
having the same Xo, ag" Yo' but with 
different at, the transverse phase-space 
area can change. This change (usually 
a decrease in transverse area) is rela
tively small and unimportant compared to 
the distortion, but it does not violate 
Liouville's Theorem. Analytic results 
for this area change are given in Eq. (26) 
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