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Introduction 

Recent work l has shown that significant advan
tages are obtained in linear acceleration of pro
tons by using an alternating periodic structure 
(hereinafter referred to as APS) operated in a n/2 
resonant mode. Compared to an equivalent uniform 
periodic structure (hereinafter referred to as UPS) 
operated, for maximum shunt impedance, in its res
onant n mode, the APS in a n/2 mode enjoys great 
advantages in relative immunity from beam loading 
and detuning effects. It has been shown2 that, 
while such advantages (which depend mainly on the 
frequency separation between the operating and ad
jacent resonant modes) are attributable only to 
the difference in the operating mode, shifting op
eration from the n to the n/2 mode in a UPS would 
involve a price of significantly lowered shunt im
pedance. The APS, on the other hand, obtains such 
advantages of increased stability while sacrificing 
little in shunt impedance because of an improved 
transit time factor attributable to the structure. 
In fact, an approximate calculation3 predicted that 
the shunt impedance of an APS in a n/2 mode might 
actually be better than that of a UPS in its n 
mode. 

The calculation of shunt impedance referred 
to above was based on a weak coupling approxima
tion, which in effect neglected all field varia
tion in the vicinity of the coupling aperture. At 
best, such an approximation could shpw only the 
variation of shunt impedance with cell length ra
tio and phase velocity, without providing any in
formation on the effect of varying the coupling 
aperture size. Aperture variation will not only 
affect shunt impedance and transit time factor di
rectly through the changes it produces in field 
distribution, but it can also be expected to 
change the functional dependence of these quanti
ties on cell length racio. Since experimental 
data are available for different center bore hole 
sizes and because of the analytic simplification 
involved, we will limit the aperture variations 
considered to variations of bore hole radii. 

Field Approximation 

To find the dependence of shunt impedance on 
both cell length ratio and coupling aperture size, 

* Work performed under the auspices of the U.S. 
Atomic Energy Commission while at Brookhaven 
National Laboratory, Upton, L.r., New York. 

it suffices to find an appropriate approximation 
for the field distribution along the axis. For this 
purpose we use a scheme similar to that described 
by Slater 4 to resolve the field around the aper
ture into symmetric and antisymmetric parts. For 
the lowest passband, the antisymmetric part is fur
nished by the TMOlO mode of each resonant cell, 
which is essentially a constant value of axial 
field denoted, E~. The symmetric component, de
noted E~ , is then calculated to satisfy boundary 
conditions at the coupling hole. This is done by 
an appropriate conformal transformation and the 
result given by Slater,S with the origin centered 
in the coupling hole of radius, a , is: 
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Such resolution into symmetric and antisym
metric components is similar to the original treat
ment of these problems by Bethe 6 and later treat
ments like Bevensee's.7 The TMolO-mode antisym
metric component corresponds to Bethe's incident 
field (EO)' or Bevensee's short circuit mode (EO), 
and the symmetric part corresponds to Bethe's dif
fracted and reflected fields (E2 and E l ) or 
Bevensee's open circuit mode (el). 

For our purposes, as mentioned previously, we 
are interested in the field on the axis. The sym
metric component, E~ reduces on axis (x = y = 0) 
to: 
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It is readily seen that this field is symmetric 
about the aperture (z' = 0), has no axial compo
nent in the plane of the aperture, and approaches 
a constant field pointing towards (or away from) 
the aperture on both sides as we move away from 
the aperture. 

The linear combination of the symmetric and 
antisymmetric modes provides us with solutions 
satisfying boundary conditions at the coupling ap
erture. We may now choose the relative amplitude 
of each component to satisfy other conditions de
pending on the mode of operation. For a n/2 mode, 
we require that Ez = E~ + E~ shall vanish at the 
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center of one of the cells. Choosing that n/2 
mode, in an APS with long cell length Ll and short 
cell length L2 ' which has vanishing field at the 
center of the shorter cell (z' = L2/2), then re
quires that the constant antisymmetric component 
should cancel the symmetric component evaluated at 
z' = L2/2 . This condition, E~ = - E~(L2/2), al
lows us to express the axial field in terms of the 
above-defined symmetric component alone as: 

Considerable analytic simplification is intro
duced without losing any essential information re
lating to the effect produced by aperture varia
tions if we replace this axial Ez by an exponential 
function having the same behavior both near the 
plane of the aperture and far from it. Thus, con
sistent with the approximate analysis above, an ex
cellent representation for the symmetric component 
of the axial field is: 

ES(z') ±E z ~ 0 

This can be seen to have the same value [E~(O) = OJ 
and slope 

ClE I 
Cl ZZ z=O na 

at the aperture as the original approximation 
above, and it also approaches the same value (EO) 
far from the aperture. Now adding that level of 
constant antisymmetric component required to make 
the total axial field vanish at the center of the 
smaller cell, and shifting the origin of the z co
ordinate to the center of the longer cell 
(z = z' + Ll/2) we obtain the following expression 
for the total field on the axis: 
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Since we are interested in comparing shunt 
impedance for different modes in varying struc
tures, care must be exercised to make such compar
isons at constant particle velocity (v = Sc) and 
constant excitation level. The latter requirement 
means that we must normalize the field expressions 
to provide a constant value at the center of the 
long cavity (i.e., Ez(O) should be independent of 
LJ ' L2 and a), which in turn makes EO depend on 
these structure parameters. The former require
ment (constant 6) means that we must keep the re
peat length or guide wavelength constant, which in 
turn removes the independence of Ll and L2 , i.e., 
Ll + L2 = Sle/2. Imposing these conditions leads 
to the following modification of the expressions 
for the axial field: 

2 _ e -2L 2 /(na) _ e(SA - 2L2)/(na) e4z/ (na) 
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To provide an estimate of the accuracy in
volved, these expressions may be compared to meas
ured field distributions. 8 One such comparison is 
shown in Figure 1, where the two curves - one ex
perimental and the other calculated from the ap
proximate theory above - are seen to coincide well 
within experimental accuracy. 

It should be noted that the present choice of 
origin makes the axial field an even function 
around z = 0 , £/2 and'£, where £ is the re
peat length in all normal modes. It also makes 
Ez(z) an odd function about z = Ag/4 in both the 
n/2 mode (where De = Ag = SA = 2Ll + 2L 2) and in 
the UPS n mode (where ;t = Ag = 2L). Furthermore, 
the above expressions for the axial field in the 
APS n/2 mode degenerate to Ez(z) in the UPS n mode 
as both L2 approaches zero and Ll approaches L . 

Specific Energy Gain 

Proceeding to the calculation of shunt imped
ance, or transit time factor, we first use Ez 
above to evaluate the specific energy gain (i.e., 
the energy increase per unit length and charge, 
6W/eat) for a zero phase synchronous particle 
(wt = 2nz/A g = 2nz/SA) in a repeat length of ei
ther n/2 or UPS n mode. 
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the last step following from the fact that the 
product in the integrand is even about z = Ag/4 
It is again worth noting that the expression 
above for (6W/e<i.) n/2 degenerates to (6W/e£' )UPS n 
as both L2 vanishes and Ll approaches L. Per- ' 
forming the integration and simplifying leads to 

1 [2 ( m.zla ) _ 2L2/(na)]+ na -(SA-2L 2)/(na) 
n cos SA I a e SA e 

which degenerates to 
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( ~~) 
UPS,n 

As one of the two factors determining relative 
shunt impedance per unit length 

2 
[r

sh 
= (!:M/e£.) / (P/ot)] , 

it will be informative to examine the dependence 
on structure parameters of the square of the ratio 
of the specific energy gain between the two modes. 
Defining this latter quantity as relative specific 
energy gain squared, Gr , we obtain 

G 
r 
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2 
(6W/ect:.)n/2 

2 
(6W/e;,t )UPS, n 

B - SA 
and 

na 

Its variation with F (which is in effect a measure 
of the cell length ratio) and a/SA (which measures 
the effect of bore hole radius) is shown in Fig. 2. 
Since F = 1 corresponds to a n/2 mode in a UPS and 
F = 0 corresponds to a n mode in a UPS, Fig. 2 re
veals the characteristic decrease of specific en
ergy gain and relative disadvantage of the n/2 
mode in a UPS structure. Now, however, Fig. 2 re
veals that n/2-mode operation in an APS with F < 1 
tends to reduce that relative disadvantage. We 
see also that increasing bore hole radius will 
likewise increase the relative specific energy 
gain. 

Transit Time Factor 

The above-mentioned relative disadvantage of 
the n/2 mode in a UPS is, of course, due to the 
relatively smaller average axial field of the n/2 
mode. If we cancel that effect by normalizing to 
the avera6e electric field, we obtain the transit 
time factor, T : 

T - (6W/e£' ) / lEo I 

where 
.;[ 

lEo I 
1 J IE I dz ~~ d z 

0 

Using our previously developed expression for Ez 
in the integral, and noting again that the APS 
n/2 mode degenerates to the UPS n mode in the lim
it of F = 0, we obtain 

[B - (1 - e-B) J [2 - e-FB / 2 - e-(2-F)B/2 J 

Multiplying this ratio by/Gr then gives the rela
tive transit time factor, Tn/2/TuPS n ' the varia
tion of which is shown in Fig. 3. nere we see the 
advantage in transit time factor of the n/2 mode 
because of better utilization of average axial 
field. Again we observe that this advantage is 
increased with increasing F and decreasing bore 
hole radius, a 

Shunt Impedance 

Finally, the calculation of shunt impedance 
requires an evaluation of the average power loss 
per unit length, p/~. There are two very sim
ple approximations for this factor to provide 
mainly qualitative results. Firstly, one may as
sume the average power loss per unit length as 
roughly proportional to the square of the axial 
field. This might apply for strong cell-to-cell 
coupling where the losses are mainly in the outer 
cylinder. For such an approximation, p/~cr IEOI2, 
the shunt resistance per unit length becomes pro
portional to the square of the transit time factor, 

and the variation of the square root of relative 
shunt resistance would be similar to that shown in 
Fig. 3. Alternatively, we may assume the losses 
are roughly the same as for uncoupled cavities to 
provide an approximation for the weak coupling 
case. This might also serve for investigation of 
variations, such as bore hole radius, which signi
ficantly affect only the accelerating field while 
changing only slightly the total coupling and 
fields at the cell walls. In the weak coupling 
approximation, following Beringer, we would set 

P/£ ex [1 + (2.40S/nS) - F/2] 

to obtain a relative shunt resistance 

G 
r 

1 + 2.40S/nS 
1 + (2.40S/nS) - F/2 

The increase of the relative power loss factor 
mUltiplying Gr ' as F increases from 0, will raise 
the re12~ive shunt resistance above unity, even 
for very small bore hole radii. Again there is a 
range of F where we obtain higher shunt resistance 
in the n/2 mode than in the n mode, with results 
identical to Beringer's in the case of vanishing 
bore hole radius. The effects in increasing bore 
hole radius are the same as described previously 
for the factor Gr and displayed in Fig. 2. This 
will also result in increasing the range of F in 
which shunt resistance of an APS n/2 mode will 
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exceed that of a UPS n mode, as shown in Fig. 4. 

In order to remove any possible source of con
fusion on the effect of varying bore hole radius 
in a given mode and structure we have plotted the 
variation of specific energy gain versus bore hole 
radius, a , with cell length ratio, F , as para
meter in Fig. 5. Here we note that the specific 
energy gain in the n/2 mode decreases with in
creasing bore hole radius, the decrease being 
sharp only in the range of small F and small a 
The fact that specific energy gain falls with in
creasing (a) while relative specific energy gain 
rises with increasing (a) (as indicated in 
Fig. 2) means only that increasing bore hole ra
dius has a greater effect on the UPS n mode than 
it does on the APS n/2 mode. 
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Fig. 1. Axial variation of accelerating 
fields. 

Fig. 2. Relative specific energy gain 
variation with cell-length 
ratio: Parameter: bore-hole 
radius. 
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Fig. 3. Transit time factor vari
ation with cell-length 
ratio. Parameter: bore
hole radius, a. 

Fig. 4. Relative shunt resistance 
vs cell-length ratio for 
weak coupling. Parameters: 
bore-hole radius and 
velocity. 

Fig. 5. Specific energy gain vs 
bore-hole radius. Param
eter: cell-length ratio. 
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