

LINAC 2004 XXII International Linear Accelerator Conference Lübeck, Germany, 17 August 2004

CLIC Magnet Stabilization Studies (TUP88)

R. Assmann, W. Coosemans, G. Guignard, <u>S. Redaelli</u>, D. Schulte, I. Wilson, F. Zimmermann

CERN AB-ABP Geneva, Switzerland

- 1. Introduction
- 2. CLIC Stability Study experimental setup
- 3. Highlights of experimental achievements
- 4. Conclusions

1. Introduction - Stability issues in linear colliders

CLIC: $E_{cm} = 3 - 5 \text{ TeV}$ **L = 0.8 x 10³⁵ cm⁻²s⁻¹** $P_b \approx 2 \text{ x 15 MW}$ $\sigma_x \text{ x } \sigma_v = 60 \text{ nm x 0.7 nm}$

The luminosity depends strongly on the relative beam-beam offset:

Final focus quads must be **stable** to a fraction of the colliding beam size!!

Tolerances for 2% luminosity reductions

Magnet	N _{magnet}	f_{min}	I_x	I_y	
Linac	2600	4 Hz	14 nm	1.3 nm	Is this <i>really</i>
Final Focus	2	4 Hz	4 nm 🔇	0.2 nm	achievable?

2. CLIC Stability Study

Activities from January 2001 to December 2003 People: R. Assmann, W. Coosemans, G. Guignard, S. Redaelli, D. Schulte, I. Wilson, F. Zimmermann

Our approach: use state-of-the-art stabilization devices to stabilize CLIC prototype quadrupoles in a normal working environment.

The CLIC test stand for vibration measurements and magnet stabilization:

The experimental setup includes:

- Sensors for vibration measurements (geophones)
- Honeycomb table (virtually) with no internal resonances
- Prototypes accelerator magnets
- State-of-the-art stabilization equipment
- Stretched-wire system for alignment measurements

3. Achieved quadrupole stability

Integrated vertical RMS motion versus frequency

CLIC prototype magnets stabilized to the sub-nanometre level !!

Above 4Hz: 0.43 nm on the quadrupole instead of 6.20 nm on the ground.

Ok, this is good. But is it *stable*?

Quadrupole vibrations kept below the 1 nm level over a period of 9 consecutive days!

4. Conclusions

The CLIC Stability Team has demonstrated the *principle feasibility* of colliding nanometre-size beams in future linear accelerators like CLIC:

- ✓ For the first time, a prototype quadrupole was stabilized to 0.5 nm above 4 Hz in a normal working area.
- ✓ Stabilization below 1 nm continuously for several days.
- \checkmark Horizontal stability within tolerances.
- ✓ Simulations of time-dependent CLIC luminosity indicate that 70% of the nominal luminosity can be achieved!

Outlook

✓ Stabilization performance on more realistic quadrupole prototypes

✓ Study integration of tested devices in the CLIC detector region