

<u>MULTI-BUNCH BEAM</u> <u>DYNAMICS STUDIES</u> IN THE EUROPEAN XFEL

N. Baboi, DESY, Hamburg TUP41

Lübeck, Germany, Aug. 16-20, 2004

LINAC 2004

TUP41

Linac for the European XFEL

- X-ray Free Electron Laser
 - MO102 Reinhard Brinkmann
 - initially developed in conjunction with the TESLA project

http://www.desy.de/pr-info/desyhome/gfx/presse/fotos/xfel/300dpi/xfel_schema.jpg

• Linac

- > 1.5 km, containing almost 1000 TESLA superconducting, 1m long cavities
- Various beam structure

Energy	10-20 GeV	
Charge	1 nC	
Pulse length	≤ 800 μs	
Bunch spacing	≥ 200 ns	
Number of bunches per train	≤ 4000	

Multi-Bunch Beam Dynamics

- Electron beam quality is important
- Long-range wakefield effects
 - may dilute beam quality
 - > how critical are wakefield effects for the XFEL?
- From the extensive simulations made for the TESLA linear collider
 - \Rightarrow many conclusions on the XFEL dynamics
 - relaxed beam and requirements, e.g.
 - smaller bunch charge
 - higher design normalized emittance (1.4·10⁻⁶ vs. 3·10⁻⁸ m·rad)
 - bowever, there are significant differences, e.g.
 - low energy of the beam stronger kicks from wakes
 - different bunch train structure
- Therefore simulations for the XFEL were desirable

TUP41

XFEL Linac Layout

Simulations

- Specifications
 - cavity misalign. 500 μm rms
 - HOM detuning 0.1% rms
- Dip. passbands 1-3
- > 200 ns bunch spacing (min)
- 800 μs length (max)
- energy 20 GeV (max)

Simulations (2)

- Higher emittance for short bunch trains, low spacing and low energy
- Energy spread
 - > 5.15 MeV rms for 20 ns pulse
 - > 17 MeV peak-to-peak

Emittance growth (%)

Spacing	Bunch train length		
[ns]	$[\mu s]$		
	800	120	20
200	0.017	0.11	0.62
400	0.003	0.022	0.11
337	0.0005	0.003	0.016

- If concern for users with some pulse structures
 - can kick away the first part of the train
 - > due to the static nature of the multi-bunch effects, as shown for TESLA → can compensate with feedback system

Related Posters -Beam alignment in TESLA Cavities

- Beam alignment
 - Studies on alignment in the TESLA cavities based on the signals from the HOM couplers started at TTF2 @ DESY
 - Should improve further the beam quality
 - MOP36
 - O. Napoly, M. Wendt present at the conference

TUP41

Related Posters -Tolerances in TESLA (and XFEL)

- Specification: misalign. 500 µm rms; detuning 0.1% rms
- Frequency spread measured in TTF cavities
 - 0.05...0.45% rms, depending on the mode
- Study of sensitivity to tolerances
- ► MOP41
 - R.M. Jones present at the conference

N. Baboi, DESY

TUP41

TUP41 Wakefields and Higher Order Modes (HOM) in the TESLA Cavities

TESLA Cavity

LINAC 2004, Lübeck, Aug. 16-20, 2004