OPTIMIZATION OF POSITRON CAPTURE IN NLC

Yuri K. Batygin

SLAC, Stanford, CA 94309

Next Linear Collider layout.

Conventional positron source layout.

NLC polarized positron injector layout.

Positron beam parameters

Parameter	Value	
Energy	1.98 GeV	
Bunch spacing	1.4/2.8 ns	
Bunch energy variation	1% FW	
Single bunch energy spread	2% FW	
Normalized emittance	0.03 m rad	
Bunch length, _z	10 mm	
Particles/bunch	$0.9/1.8 \ge 10^{10}$	
Train population uniformity	1% FW	
Bunch-to-bunch pop. uniformity	2% rms	
Number of bunches	190/95	
Repetition rate	120 Hz	
Beam Power	58 kW	

Initial distribution of positrons generated by 10.7 MeV -flux.

Final distribution of positrons at 1.98 GeV

POSITRON CAPTURE AT 1.9 GeV

POSITRON YIELD AT 1.9 GeV

$$Y = \frac{N_{e^+, 1.9 \text{GeV}}}{N_{e^-}}$$
, $Y = \frac{N_{e^+, 1.9 \text{GeV}}}{N}$

LONGITUDINAL POLARIZATION OF POSITRONS

Polarization of positrons

$$\mathbf{P} = \frac{\mathbf{N}_{+} - \mathbf{N}_{-}}{\mathbf{N}_{+} + \mathbf{N}_{-}}$$

Longitudinal polarization of positron beam

$$< P_z > = \frac{1}{N} \sum_{i=1}^{N} S_z^{(i)} P^{(i)}$$

Positron yield after 1.98 GeV linac as a function of 6D acceptance

6-D phase space	x, y <0.03 m rad E/E =2%	x, y <0.045 m rad E/E =2%	x, y<0.06 m rad E/E =2%	x, y<0.03 m rad E/E =4%	x, y<0.045 m rad E/E =4%	x, y<0.06 m rad E/E =4%
Positron yield, N _{e+} /N _e -, within 6-D phase space	1.01	1.26	1.36	1.25	1.55	1.69

Positron yield as a function of incident electron bunch size

Positron yield as a function of transverse electron bunch size (bunch length = 4 ps, target Hg, 4 RL).

Positron yield as a function of bunch length (bunch size $_x$ =1.6 mm, target W-Re, 4.5 RL).

Yield of positrons with respect to incident - flux

Energy of	Positron	Positron	Positron yield	Positron
- flux 1 st	yield at the	capture at	at 1.9 GeV,	polarization
harmonic	target,	1.9 GeV		
cutoff,	N _e (target)		$\frac{N_{e^+}(1.9 \text{ GeV})}{1.9 \text{ GeV}}$	
MeV	$\frac{-c}{N}$		N	
10.7	0.029	0.20	$5.8 \cdot 10^{-3}$	0.6
30	0.11	0.058	6.4.10-3	0.6
60	0.17	0.026	$4.4 \cdot 10^{-3}$	0.6

Optimization of transmission through flux concentrator

z (cm) (Top) Magnetic field in flux concentrator (Bottom) Distribution of positrons after flux concentrator Positron capture as a function of magnetic field configuration

B_z at	FC field	Aperture	Capture	Capture
target,	$B_z(z),$	along	after	at 250
Tesla	Tesla	FC, cm	FC	MeV
1.2	6.40.5	0.52	0.29	0.24
6.4	6.4	0.52	0.42	0.09
6.4	6.4	2	0.42	0.09
6.4	6.40.5	0.52	0.39	0.33

SUMMARY

- 1. Start-to-end simulations of positron capture were done from positron target until injection into positron pre-damping ring.
- 2. Two schemes for positron production were considered:
 - conventional scheme, utilizing 6.2 GeV electron beam interacting with high-Z positron production target,
 - - polarized positron production scheme based on polarized photons generated in helical undulator.
- 3. Positron yield in the conventional scheme has been increased from 1.0 to at least 1.5 and capture in the polarized positron scheme from 0.25 to 0.30 while maintaining 60% positron polarization.