

1. Upgrade Goal

	BEPC	BEPCI		
Collider Luminosity	1×10 ³¹ cm ⁻² s ⁻¹	1×10 ³³ cm ⁻² s ⁻¹		
Injection Energy	1.30 GeV	1.89 GeV		
Beam Current (e+)	4.0 mA	40 mA		
Energy Spread (e+)	±0.8 %	±0.5 %		
Emittance (e+)	1.70 mm-mrad	1.60 mm-mrad		
〔e- 〕	0.58 mm-mrad	0.20 mm-mrad		
Pulse Repe. Rate	12.5 Hz	50 Hz		
Injection Rate (e+)	3 mA/min	50 mA/min		
MOP34, Linac2004 S	S.H.Wang, IHEP, Beijing	2		

1) New e- Gun	Gemelete tuning devices
	Complete tuning devices
2) New e+ Source	High e+ yield;
	Large capture acceptance
3) New RF System	High RF power output;
· 新 後	Stable phasing loops
4) New Beam	Orbit correction;
Tuning Devices	Optics tuning
5) Other System	Vacuum, Instrumentation
Upgrade	RF Transmission, Control

3. New Electron Gun

1) A thermionic triode gun, cathode- grid Y796, emission density 10 A/cm²: 10 A, 1 ns, 50 Hz.

2) Optimize the beam optics and emittance

3. New Electron Gun (Cont.) 3) A complete beam tuning devices: Focusing lens; BPMs; Correctors; BCMs ; Profile.

4. New Positron Source

- 1) A Flux Concentrator is employed:
 - L = 10 cm , B = 5.3 T \searrow 0.50 T, Φ = 7 mm \rightarrow 52 mm.

12 turns by wire cutting with gap thickness 0.2 mm. Powered by 12 kA, 5 µ s, 50 Hz.

4. New Positron Source (Cont.) 2) New e+ target chamber in testing

5. New RF Power Sourse 1) Higher power Klystrons (50 MW - 65 MW) to replace the old ones (30 MW) for energy upgrade to 1.89 GeV

5. New RF Power Sourse (Cont.) 2) New modulators with high power 320 kV \times 360 A. 1-> 2-> 3->

5. New RF Power Sourse (Cont.)

3) Phase control system with following measures:

- (1) Use of the maximum energy method to define the optimum phase;
- (2) A PAD system of I/Q demodulator type is used to monitor the phase with accuracy of 0.2° and amplitude.
- (3) The new I of A units have been developed with its minimum insertion loss of 2 dB, maximum decay of 20 dB and phasing range of $> 360^{\circ}$.
- (4) A reference line of the phase stabilized co-axial type is employed for its easy maintenance and cheaper than the optical type.
- (5) A prototype of phasing loop was made for the 1st RF unit, and a

very good experimental result has been obtained within $\pm 2^{\circ}$.

S.H.Wang, IHEP, Beijing

A new $] \Phi A$ unit Mini. insertion loss 2 dB, Maxi. decay of 20 dB. phasing range of > 360°.

Test results: $\Delta \phi \leq \pm 2^{\circ}$

MOP34, Linac2004

S.H.Wang, IHEP, Beijing

6. Optics and Orbit Correction 1) Optics correction

6. Optics and Orbit Correction (Cont.) 2) Orbit correction with Strip-line BPMs and Correctors

6. Optics and Orbit Correction (Cont.)

7. Beam Modeling 1) Positron beam modeling

16

н

н.

With TRASPORT CEGS4 PARMELA and LIAR – codes, with optimum beam optics and orbit correction system, and with

the initial beam offset	≤±0.3 mm,	
Structure, Quads, BPMs offset	≤±0.2 mm,	
Phasing error	≤±2 ⁰ ,	
Modulator's instability	≤ ±0 .1%,	1

11

1

Positron beam's modeling results

	Location	Energy (MeV)	Current (mA)	Emittance (mm-mrad)	ΔΕ/Ε (%)	Δφ (0)	e+ yield (e⁺/e⁻.GeV)
	e+ Target exit	1 -14	80	3080			5.58%
	DC Solen. exit	89.45	53	29.2	±8.0	±16	3.67%
	Linac exit	1890	42	1.42	±0.5	±5.0	2.92%
23	Design goal	1890	37	1.60	±0.5	±5.0	2.57%
MC	MOP34, Linac2004 S.H.Wang, IHEP, Beijing						

7. Beam Modeling (Cont.)

2) e- beam modeling

With EGUN, TRASPORT, PARMELA and LIAR – codes, with optimum beam optics and orbit correction system, and with

the initial beam offset Structure, Quads, BPMs offset Phasing error Modulator's instability

Electron beam for injection into ring

≤±0.3 mm,

≤±0.1%,

<u>≤±2⁰,</u>

≤±0.2 mm,

	Location	Energy (MeV)	Current (mA)	Emittance (mm-mrad)	ΔΕ/E (%)	Δφ (o)
it.	Gun exit	0.150	1.5	42.5		±180
「夏」	Linac exit	1890	0.6	0.18	±0.5	±5

Primary e- beam for the e+ production

	Location	Energy (MeV)	Current (mA)	Emittance (mm-mrad)	Spot size (mm)
	Gun exit	0.150	10.0	17.1	6.0
	@ target	250	6.0	0.75	1.0 – 1.5
10P34, Lina	c2004	S.H.W	/ang, IHEP, E	Beijing	

8.Summary

- A new e- gun, a new e+ source, an upgraded RF power system with phasing loops, and many other modified components for upgrading the BEPCII injector linac have been designed, fabricated, tested and being installed in their final positions.
 - A new e- and e+ beam from this linac is expected soon.
- By controlling the phasing error within $\pm 2^{\circ}$, machine alignment error within ± 0.2 mm, and modulator's voltage error within $\pm 0.1\%$, the linac beam qualities are expected to meet the design goal with the aid of orbit correction system.

S.H.Wang, IHEP, Beijing

