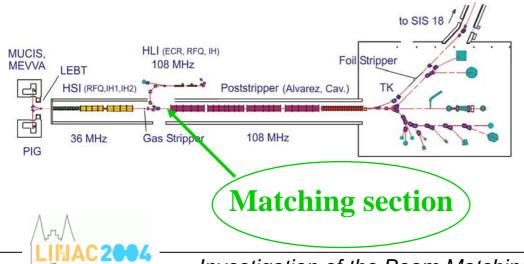
Investigation of the Beam Matching to the GSI-Alvarez DTL under Space Charge Conditions

S. Yaramishev, W. Barth, L. Dahl, L. Groening, S. Richter, GSI, Darmstadt, Germany

The GSI-UNILAC – heavy ion, high current linac

36 MHz high current RFQ/IH-injector


15 emA U⁴⁺

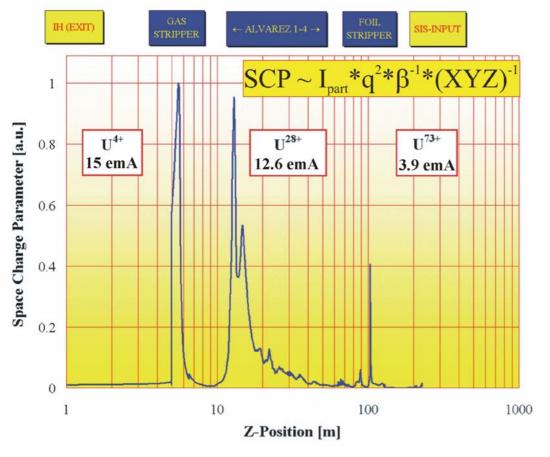
Gas stripper at an energy of 1.4 MeV/u

108 MHz Alvarez postaccelerator up to 11.4 MeV/u

12.6 emA U²⁸⁺

UNILAC is designed to accelerate all ion species with m/z< 8.5 and to fill the heavy ion synchrotron SIS up to its space charge limit.

Increase current


Increase brilliance

Investigation of the Beam Matching to the GSI-Alvarez DTL under Space Charge Conditions, S. Yaramishev

Space charge parameter along UNILAC

(design uranium current)

Two significant peaks:

•after stripping:

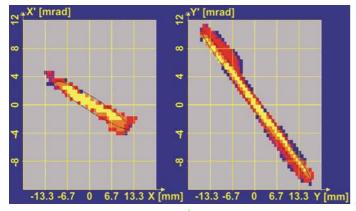
current is up to factor of 7 higher for uranium beam

•at the entrance of the 1st Alvarez tank:

matching requires small beam size in all three dimensions

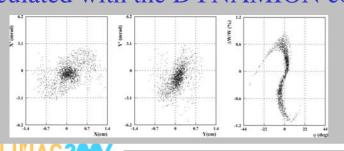
Complicate matching

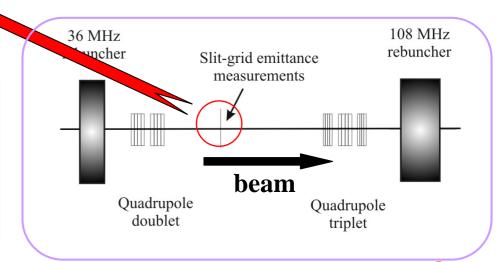
Emittance growth


Particle losses

Matching section to the Alvarez postaccelerator

Measured transverse beam emittances (4 emA U²⁸⁺)

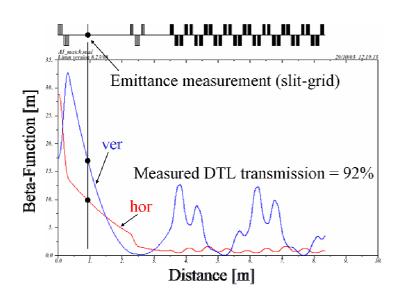


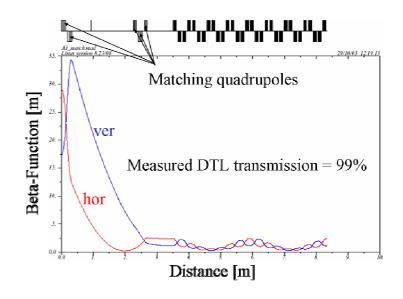

Systematic optimization procedure

Applying the procedure for the 4 emA U²⁸⁺ beam, the losses along the Alvarez section were reduced from 8% to less than 1%, being the resolution of the transmission measurement.

Multi-particle distribution

Beam emittances behind postaccelerator calculated with the DYNAMION code.

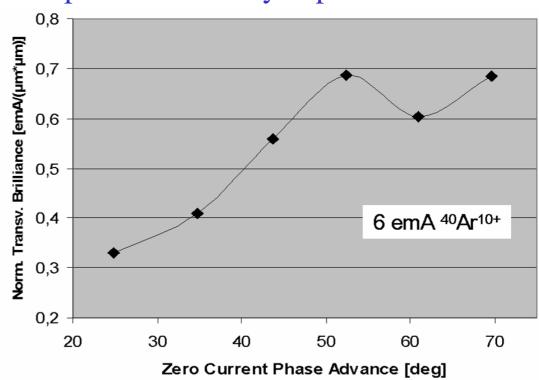



Investigation of the Beam Matching to the GSI-Alvarez DTL under Space Charge Conditions, S. Yaramishev

Systematic optimization procedure

Beta-functions in the matching section and first Alvarez cells before optimization

Beta-functions in the matching section and first Alvarez cells after optimization



Optimization of the quadrupoles in the DTL

Increasing of the quadrupole strength leads to higher phase advance and improved beam quality Space charge effects can be scaled from argon to uranium: 12.6 emA $U^{28+} \approx 6$ emA Ar^{10+} High m/z of $^{238}U^{28+}$ limits the maximum phase advance σ_0 <45° in the 1st DTL

For ${}^{40}\text{Ar}^{10+}$ m/z is less - experimental study is possible!

A phase advance $\sigma_0 > 50^{\circ}$ is required to increase the beam brilliance.

FAIR Project

L. Dahl - MOP05

L. Groening - MOP06

S. Richter - MOP07

5. Yaramishev - MOP08

W. Barth - TU103

