

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

LCLS - Accelerator System Overview

Patrick Krejcik

on behalf of the LCLS Team Stanford Linear Accelerator Center

August 16-20, 2004 LINAC 2004 – Lübeck, Germany P. Krejcik pkr@slac.stanford.edu

Accelerator Issues in the SLAC Design

Issues

- Low emittance injector

 Cold beam, low σ_δ ≈ 0.05 %

 Bunch compression

 Coherent Synchrotron Radiation
 Longitudinal space charge
- Beam stability

Design solutions

- RF photoinjector
- Laser heater
- Two magnetic chicanes
- RF linearization with higher harmonic X-band cavity
- Diagnostics
- Fast feedback

August 16-20, 2004

LINAC 2004 – Lübeck, Germany

pkr@slac.stanford.edu

Diagnostic challenges

Measurement

- Measurement of ultrashort bunch profiles
- Shot-by-shot
 measurement of bunch
 length
- Bunch timing measurement

Devices

- RF transverse deflecting cavity "LOLA"
- Terahertz coherent spectral power measurement
- Coherent radiation autocorrelation
- Electro-optic bunch profiling

August 16-20, 2004

LINAC 2004 – Lübeck, Germany

pkr@slac.stanford.edu

Accelerator Issues in the SLAC Design

Issues

Low emittance injector
 Cold beam, low σ₈ ≈ 0.05 %
 Bunch compression
 Coherent Synchrotron Radiation
 Longitudinal space charge
 Beam stability

Design solutions

- RF photoinjector
- Laser heater
- Two magnetic chicanes
- RF linearization with higher harmonic X-band cavity
- Diagnostics
- Fast feedback

August 16-20, 2004

LINAC 2004 – Lübeck, Germany

pkr@slac.stanford.edu

Limitation from Coherent Synchrotron Radiation

Two-stage bunch compression approach – P. Emma

Issues

- At low energies if bunch is compressed too much space charge spoils emittance
- At high energies if bunch is compressed too hard synchrotron radiation adds large energy spread

Design solutions

- Compress in two stages
- Limit low energy compression so space charge not a limit
- Second compression to final bunch length at higher energy, but with weaker bends to limit synchrotron radiation.

LINAC 2004 – Lübeck, Germany

pkr@slac.stanford.edu

Diagnosing Coherent Radiation 1. autocorrelation

Transition radiation is coherent at wavelengths longer than the bunch length, $\lambda > (2\pi)^{1/2} \sigma_z$

Limited by long wavelength cutoff and absorption resonances

SLAC **SPPS** measurement: P. Muggli, M. Hogan

P. Krejcik

pkr@slac.stanford.edu

Diagnosing Coherent Radiation 2. spectral power

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Electro-Optical Sampling at SPPS – A. Cavalieri et al.

Energy and Bunch Length Feedback Loops

- 4 energy feedback loops
- 2 bunch length feedback loops
- 120 Hz nominal operation, <1 pulse delay
- Feedback model (J. Wu)
- PID controller (<u>p</u>roportional, <u>i</u>ntegral, <u>d</u>erivative)
- Cascade control for sequential loops (off-diagonal matrix elements)

P. Krejcik

August 16-20, 2004 LINAC 2004 – Lübeck, Germany

pkr@slac.stanford.edu

Summary

- Design optimized for emittance preservation
- Minimize disruption from strong self-fields of the bunch
- Two-stage compression
- Laser heater reduces instabilities
- Diagnostics and feedback integral part of design
- Future expansion to multiple sase beamlines
- New possibilities include enhanced sase and ultrashort bunches!

Acknowledgements

- R. Akre
- A. Cavalieri
- E. Bong
- D. Dowell
- P. Emma
- Z. Huang
- C. Limborg-Duprey
- J. Wu
- And many others!

August 16-20, 2004 LINAC 2004 – Lübeck, Germany

pkr@slac.stanford.edu

