Status of High-Power Tests of Dual Mode SLED-II Sysytem for an X-Band Linear Collider

Sami G. Tantawi

Stanford Linear Accelerator Center 2575 Sand Hill Road Menlo Park, CA 94025

Outline

- Introduction
- System Layout
- Component Designs
- System Cold Tests
- High-Power Results
- Conclusions

Motivation

- The X-band linear collider requires a waveguide system to compress, transmit, and distribute ultra high power rf pulses to the accelerating structures.
- Pulse compression is used to match the pulse width capability of klystrons to the pulse width requirement of the accelerator.
- The design, construction, and reliable operation of a prototype rf system, capable of handling peak power levels on the order of half a *gigawatt*, is the focus of this project at SLAC.

Highlights

- We have reliably produced and manipulated flat 400 ns rf pulses carrying over 500 MW.
- We have developed waveguide components capable of manipulating hundreds of megawatts.
- We have utilized dual-moding, both for power direction and for shortening delay lines.
- We have demonstrated an advanced X-band rf system which meets the basic requirements for the Next Linear Collider.

Linear Collider Cross-Section Layout

The Experimental RF Pulse Compression System

output load trees

compressed output~600 MW, 400 ns.

dual-mode waveguide carrying ~200 MW dual-moded resonant delay lines ~30m

single mode waveguide input to the pulse compression system; ~100 MW/line for 1.6 μs RF inputs to the four 50 MW klystrons

The Heart of the Pulse Compression System

Dual-Mode Combiner

Jog Converter and Mode Mixer

Dual-Mode Rectangular-to-Circular Taper Mode Converter

Dual-Mode Vacuum Pumpout

The hole pattern is designed to cancel any coupling or reflection for the TE_{01} and TE_{11} modes.

Dual-Mode Directional Coupler rectangular waveguide for coupling the TE₀₁ mode circular waveguide ridge waveguide for coupling the TE₁₁ mode

•waveguide sizes chosen to match wavelengths in side waveguides to circular waveguide modes.

•coupling hole patterns represents Hamming windows.

8-Pack Dual-Mode SLED Head

SLED Head Mechanical Design

equivalent to three planar hybrids on one single substrate

Magic H Hybrid

Dual-Mode Splitter

For either incident mode, power is evenly divided between the two output ports, which launch TE_{01} .

Quadrapus TE₀₁ Four-Way Power Splitter

Load Tree

The input power, carried by the TE_{01} mode, is split 4 ways to be absorbed at the loads

High-Power Load

Magnetic stainless steel carrying circularly polarized TE₁₁ past matched pairs of partial choke grooves.

The Experimental RF Pulse Compression System

output load trees

compressed output~600 MW, 400 ns.

dual-mode waveguide carrying ~200 MW dual-moded resonant delay lines ~30m

single mode waveguide input to the pulse compression system; ~100 MW/line for 1.6 μs RF inputs to the four 50 MW klystrons

Dual-Moded Delay Line

Dual-moding the delay lines cuts their required length approximately in half.

$$L = \frac{T}{2} \frac{v_{g1} v_{g2}}{v_{g1} + v_{g2}}$$

Input Taper

End Taper

Reflective TE₀₁/TE₀₂ Mode Converter

Delay Line Cold Tests

Small mid-time-bin steps indicate mode impurity.

Problem Fixed by:

- Permutations of tapers
- Adjusting iris distance
- Choosing good resonant position for tuning plunger (3 within range of motion).

Individual Delay Line SLED Gain

Theoretical gain for a compression ratio of four is 3.44 (lossless).

System Cold Tests

The Experimental RF Pulse Compression System

output load trees

compressed output~600 MW, 400 ns.

dual-mode waveguide carrying ~200 MW dual-moded resonant delay lines ~30m

single mode waveguide input to the pulse compression system; ~100 MW/line for 1.6 μs RF inputs to the four 50 MW klystrons

System Layout

High Power Tests

- Feedback program monitored pump currents while processing up power to avoid runaway.
- Processed with widening comb pulse structure.

Breakdown Bottleneck in Input WR90 Line.

Autopsy of Waveguide:

Flange joint leak during in-situ bake caused surface oxidation.

Modifications:

- replaced a pump T
- replaced long run of WR90
- cooled down remaining WR90 with fans
 - hard wired the klystrons driver together

High Power Goal Reached

And Exceeded

Calorimetric Calibration Check

New Low-Level RF Architecture

Pulse Flattening Program

Generates ideal pulse and compares to measured pulse.

Aligns pulses temporally by maximizing overlap integral.

Adjusts generated pulse point by point (10 ns intervals) to approximate ideal.

Flattened Pulse

Power (MW)

Reliability Demonstration Run

Two 26 hrs. gaps w/ no trips.

Diode Reflected Energy Trip Initial Analysis

Out of 211 trips in 365.65 hrs (30Hz equivalent)

- 29 -SLED or Combiner ?
- 1 Klystron 5
- 15 Klystrons 5&6
- 18 Klystron 6
- 72 Klystron 7
- 28 Klystrons 7&8
- 38 Klystron 8
- 1 Loads
- 7 ?

Analysis Corrected for SLED Mistuning and Human Interference

Hours of High Power Operation

Conclusion

- We've demonstrated the feasibility of the type of rf system envisioned by proponents of a warm X-band linear collider.
- We've developed unique over-moded components and made use of the concept of dual moding.
- Years of high-power component development have born fruit in this pulse compression system which has finally tested their power-handling capability.
- The compressed half-gigawatt pulses carrying 200 J represent a major achievement in pulsed rf power.

Acknowledgment

This work is a result of a continuous effort by many researches and engineers over many years.

- In particular, The efforts of C. Nantista, N. Kroll, R. Miller, P. Wilson, V. Dolgashev, K. Fant, C. Pearson, R. Ruth, were instrumental to the results achieved to date.
- Jose Chan: A persistence efforts during the manufacturing and testing of components
- David Schultz Denis Atkinson, C. Adolphsen D. Burke and the NLC group
- J. Nelson, K. Jobe, M. Ross, J. Frisch, T. Smith, D. McCormick, and the NLCTA operations team were a must for the successful conclusion of this project.
- D. Cassel, J. DeLamare, M. Nguyen, M. Laruss and the modulator team
- K. Ratcliffe and the Vacuum Assembly Team.
- We wish to Thank all operators that took shifts 24 hours a day for several months