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Abstract 
A general analytical formalism developed recently for 
cumulative beam breakup (BBU) in linear accelerators 
with arbitrary beam current profile and misalignments 
[1, 2] is extended to include time-dependent parameters, 
such as energy chirp or rf focusing, in order to reduce 
BBU-induced instabilities and emittance growth.  
Analytical results are presented and applied to practical 
accelerator configurations. 

FORMULATION AND SOLUTION 
 
In a continuum approximation, the transverse motion of 

a relativistic beam under the influence of focusing and 
BBU can be modeled by [1] 
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where g  is the usual energy parameter; /ss = L , is the 
distance from the front of the accelerator normalized to 
the accelerator length; k is the normalized focusing wave 

number; ( )/t ds cz w b= - Ú , is the time made 

dimensionless by the frequency w  and measured after the 
arrival of the head of the beam at location s ; 

( ) ( ) /F I Iz z= , the current form factor, is the 
instantaneous current divided by the average current;  

( )w z is the wake function, which, in the case of a single 

dipole mode, is assumed to be / 2( ) ( ) sin Qw u e zz z z -= ;  

e  is the coupling strength between the beam and the 
dipole mode, and includes properties of the beam and the 
deflecting mode of the accelerating structure.   

While Eq. (1) assumes a perfectly aligned accelerator, 
misalignment of the cavities and focusing elements can 
also be included in the following analysis in a 
straightforward fashion. 

Without loss of generality, we will assume a coasting 
beam.  As shown in [1], the analytical results can be 
extended to an accelerated beam by suitable coordinate 
and variable transformations. Under these assumptions, 
the equation of motion becomes 
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In the following we will make the additional 
assumption that the injection offsets (lateral displacement 
and angular divergence) are time-independent.  Again, 
time-dependent injection parameters can be included in 
the following formalism. 

Time-independent Parameters 
In [1], Equation (2) was solved under the assumption of 

constant, time-independent BBU coupling and focusing 
strengths (  and )e k .  Applying to Eq. (2) the Laplace 

transform with respect to s : ( ) ( )†, ,x x ps z zÈ ù =Î ûL , we 

obtain 
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Applying the inverse Laplace transform gives 
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Time-dependent Parameters 
When the BBU coupling and focusing strengths are 

time-dependent [ ( ) and ( )e z k z ] the beam displacement 

( ),x s z  is not given by Eqs. (3)-(6) anymore and the 

procedure for solving Eq. (2) needs to be modified.  This 
can be done simply by splitting the focusing strength 

( )k z  in two parts, one constant and the other time-
dependent, such that: 
 [ ]2 2

0( ) 1 ( )k z k k z= + D  (7) 

The displacement ( , )x s z  and its Laplace transform 
† ( , )x p z are then given by 
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There is some arbitrariness in the way the focusing 
strength ( )k z is split in two parts according to Eq. (7).  

For example, it could be assumed that ( )k z  has no 

constant term 0( 0)k =  and only a time-dependent part.  

In this case ( , )x s z  would be given by 
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While expressions (9)-(11) and (12)-(14) for ( , )x s z  
look quite different they are mathematically equivalent 
and represent the same solution of Eq. (2).  They differ 
however in the speed of convergence with (12)-(14) 
converging very slowly.   For expressions (9)-(11) to be 
of practical use the separation of ( )k z in two parts, as 
given by Eq. (7), needs to be done in such a way that the 
time-dependent part ( )k zD  is kept as small as possible.   

Form Eq. (10) we see that  
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and choosing a time-dependent focusing such that 
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Equation (16) is the general condition for eliminating 
cumulative BBU by BNS damping [3]. 

SINGLE SHORT BUNCH 
 
In the case of a single very short bunch, the wakefield 

can be assumed to be linear [ ]( )w z z= .  If one assumes 

further that the bunch charge density is constant 
[ ( ) 1]F z = , that the BBU coupling strength e  is constant 
and that the time-dependent focusing is of the form 

 2 2 2
0( ) 1 ,k z k hzÈ ù= +Î û  (18) 

then the functions ( )nf z*  can be easily calculated: 
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This, together with Eqs. (9) and (11), defines completely 
the displacement ( , )x s z .  If h  is chosen such that 

2
0/(2 )h e k= , then 0 ( ) 0nf z*

> =  and the coupling between 

the beam and the dipole mode is suppressed. 
 
In the case of a linear time dependence of the focusing  

 [ ]2 2
0( ) 1 ,k z k hz= +  (20) 

the functions ( )nf z*  can be obtained through the 
recurrence relations 
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FINITE TRAIN OF POINT-LIKE 
BUNCHES 

 
The results of the previous sections will be applied here 

to a finite train of N  identical point-like bunches 
separated, in the laboratory frame, by t , so that bunch 
M  is defined by Mz wt= . The displacement of bunch 
M  is then given by 
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Table 1: Nominal top-level linear-collider design parameters 
[1,4,5] 

Parameters Value 
Total initial energy 10 GeV 
Total final energy 1 TeV 
Linac length L 10 km 
Number of betatron periods 100 
Bunch charge 1 nC 
Number of bunches N  90 
Bunch spacing t  2.8 ns 
Deflecting-wake frequency / 2w p  14.95 GHz 
Deflecting-wake quality factor Q  �  

Deflecting-wake amplitude 0w  1015 VC-1m-2 

 
As an example, the analytical results expressed by Eqs. 

(22) and (23) will be applied to a beam representative of a 
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linear collider.  For comparison, we will use the same 
parameters as those used in [1, 4, 5], and which are listed 
in Table 1.  The time-dependent focusing is assumed to be 
of the form 

 2 2
0( ) 1

1

M
M

N
k wt k hÈ ù= +Í ú-Î û

 (24) 

where h  represents the relative variation of the focusing 
strength during the bunch train. 

Results of the application of Eqs. (22) and (23) to the 
beam described in Table 1 are shown in Fig. 1 for h = 0, 

0.01, 0.02, and 0.03.  Since this is an accelerated beam, 
the variable and coordinate transformations described in 
Appendix A of [1] were applied to Eq. (22); in particular 
Fig. 1 shows the effect of adiabatic damping.  The lower 
plot of Fig. 1 ( .03)h = , which was obtained by direct 
calculation using the analytical results given by Eqs. (22) 
and (23), is identical to Fig. 4 of [5] which was obtained 
numerically by tracking successive bunches as they 
progress along the accelerator. 

The incorporation of a finite Q  for the deflecting mode 

or the use of a different time-dependence of the focusing 
is straightforward. 

SUMMARY 
 
This paper presents a formalism to address analytically 

cumulative beam breakup in linear accelerators with time-
dependent parameters, such as energy chirp or rf focusing.  
It allows, in principle, direct calculation, at any time and 
location, of the transverse displacement of beams of 
arbitrary current distribution.  When applied to a collider-
like accelerator, the analytical results reproduce exactly 
the results of numerical simulations that were done 
previously. 

While we assumed here constant injection offsets and a 
perfectly aligned accelerator, time-dependent offsets and 
misalignment of the cavities and focusing elements, as 
well as acceleration, can be included in this formalism 
and will be presented in another publication. 
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Figure 1: Normalized lateral displacement of a finite train of 
point-like bunches at the exit of a nominal linear collider.  See 
Table 1 for the choice of parameters and Eq. (24) for the 
definition of .h  
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