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Abstract
In the present paper we study the chromatic effects

on transverse beam emittances in the transformation of
an angular-momentum-dominated round beam into a flat
beam. Analytical results are compared with numerical sim-
ulations and found in good agreement. We also attempt to
study the effects caused by the asymmetries in the four di-
mensional transverse phase space distribution.

INTRODUCTION
The theory of generating a beam with high transverse

emittance ratio, i.e., a flat beam, from an incoming angular-
momentum-dominated beam is treated in several papers
[1, 2, 3]. In this paper, we follow the theoretical treat-
ment based on four dimensional beam matrix presented in
[4], in which the round-to-flat beam (RTFB) transforma-
tion analysis was performed assuming that the beam and
the transport channel upstream of the flat beam transformer
are cylindrically symmetric and that the particle dynamics
is symplectic. The experimental demonstration of such a
round-to-flat transformation at Fermilab/NICADD Photo-
injector Lab (FNPL) by using a RTFB transformer consists
of three skew quadrupole channel is reported in [5].

CHROMATIC EFFECTS
The strength of a quadrupole is related to the particle’s

momentum. Consider an electron with a small fractional
momentum deviation δ = p−p0

p0
around the average beam

momentum p0. In practical units, the quadrupole strength
q for an electron with momentum p is given by:

q[1/m] =
300g[T/m]leff [m]

pc[MeV]
= q0(1− δ + δ2 +O(δ3)),

where g the transverse magnetostatic field gradient, leff

is the effective length of the quadrupole and c the speed
of light, q0[1/m] .= 300g[T/m]leff [m]

p0c[MeV] . Correspondingly, in
thin lens approximation, the 2× 2 transfer matrix MQ of a
normal quadrupole may be written as:

MQ(q, δ) ≈
[

1 0
q0 1

]
+ δ

[
0 0
−q0 0

]
+ δ2

[
0 0
q0 0

]
.

Consider a RTFB transformer composed of three skew
quadrupoles of strengths q1, q2, q3 and separated dy drift
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space of lengths d2 and d3. The 4 × 4 transfer matrix of
such a transformer takes the form of:

M(q1, q2, q3, d2, d3) ≈ M0 + δ∆1 + δ2∆2, (1)

where M0 is the transfer matrix for reference particle with
momentum p0, ∆1 and ∆2 are the corrections to the trans-
fer matrix to the first and second order of δ.

The general form of a cylindrically symmetric beam ma-
trix [4] at the entrance of the RTFB transformer is:

Σ0 =




σ2 0 0 κσ2

0 κ2σ2 + σ′2 −κσ2 0
0 −κσ2 σ2 0

κσ2 0 0 κ2σ2 + σ′2


 ,

(2)
where σ2 = 〈x2〉 = 〈y2〉, σ′2 = 〈x′2〉 = 〈y′2〉, κ = eBz

2p ,
Bz is the longitudinal magnetic field on the photocathode
and e the electron charge. The beam matrix at the exit of
the RTFB transformer is:

Σ = MΣ0M̃, (3)

where M̃ stands for the transpose of M . Since 〈δ〉 van-
ishes, keeping only the first order modification to the beam
matrix, from Eq. 1 and Eq. 3, we have:

Σ ≈ M0Σ0M̃0 + 〈δ2〉(M0Σ0∆̃2 +∆1Σ0∆̃1 +∆2Σ0M̃0).
(4)

Given proper transfer matrix M , the first term of Eq. 4 can
be block diagonalized and the two transverse emittances
are given by (see, for example, Ref. [4]):

ε0
x,y = εeff ∓ L, (5)

where εeff = σ
√

σ′2 + κ2σ2, L = κσ2.
When there is a relative momentum spread in the beam,

the beam matrix varies as a function of it. The two trans-
verse emittances can be calculated as the square roots of
the determinants of the top left and bottom right 2 × 2
sub-matrices of the beam matrix expressed in Eq. 4. Let’s
rewrite the second term of Eq.4 as:

〈δ2〉
[

∆11 ∆12

∆21 ∆22

]

.= 〈δ2〉(M0Σ0∆̃2 + ∆1Σ0∆̃1 + ∆2Σ0M̃0). (6)

By using the convenient relation for the determinant of the
sum of two 2× 2 matrices P and Q,

|P + Q| = |P |+ |Q|+ Tr(P †Q), (7)
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where “| |” stands for the determinant, “Tr” for the trace
of a matrix, and P † is the symplectic conjugate of P , P † =
J−1P̃ J , where J is the 2× 2 unit symplectic matrix:

J =
[

0 1
−1 0

]
,

we can write an expression for the transverse emittances in
the presence of the aforementioned chromatic effect:

εx =
√

(ε0
x)2 + 〈δ2〉2[|∆11|+ (ε0

x)2Tr(T∆†
11)],

εy =
√

(ε0
y)2 + 〈δ2〉2[|∆22|+ (ε0

y)2Tr(T∆†
22)].

(8)

As a numerical application we consider parameters (see
Table 1) close to those achieved for the FNPL flat beam ex-
periment. Note the normalized beam emittance upstream
of the RTFB transformer is taken to be equal to the ther-
mal emittance at the photocathode (γσσ′ = 1 mm mrad,
γ is the Lorenz factor). This underestimation of the emit-
tance leads to higher transverse emittance ratio. In turn this
means the calculations presented hereafter are more sensi-
tive to chromatic effects.

parameter value units
γ 30
σ 1.00 mm
κ 0.78 m−1

σ′ 0.033 mrad
d2 0.35 m
d3 0.85 m

Table 1: Parameters used as a numerical example for chro-
matic effects in flat beam generation

Using the thin lens approximation, and including the
thermal emittance, the skew quadrupole strengths are cal-
culated from Ref.[6] to be:

q1 = 1.729 m-1, q2 = −1.339 m-1, q1 = 0.628 m-1.

The normalized flat beam emittances (from Eq. 5) are:

εn
x = 0.021 mm mrad, εn

y = 46.82 mm mrad.

The analytical calculations of the two transverse emit-
tances and their ratio, as a function of relative momen-
tum spread, are first compared with simulation results from
ASTRA[7], ELEGANT[8] and SYNERGIA[9]. These re-
sults agree well in general, see Fig. 1.

On the other hand, we can see that the agreement be-
tween the analytical results and simulations is better for
lower relative momentum spread values. To further ex-
plore the difference, each particle used in the simulation is
tracked through the transfer matrix for both the cases when
the quadrupole are thick and thin lenses, using the transfer
matrix as shown in Eq. 1. We found that in the thick lens
case, the tracking results almost overlap with the simulation
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Figure 1: Chromatic effects on emittance ratio (top) and
horizontal emittance (bottom). Solid line is obtained from
Eq.8. Dashed lines with markers are computed using nu-
merical methods.

results, while the thin lens approximation tracking results
agree quite well with the analytical predictions. Hence the
difference between analytical and numerical results can be
attributed to the fact that the thin lens approximation used
in analytical model does not hold as the energy spread is
introduced.

ASYMMETRIES
Some elements in the beam line, such as the RF gun cou-

pler, could cause asymmetry in the beam before it enters the
RTFB transformer. In this case, the emittances of the flat
beam is effected and the flat beam ratio is lowered compar-
ing to the cylindrically symmetric beam case.

Suppose the y, y′ deviate from the symmetric beam by
the amount of ξ and η, respectively:

y → y + ξ,

y′ → y′ + η,

where η and ξ could be functions of y. The beam matrix at
the entrance of the RTFB transformer is:

Σ = Σ∗
0 + ∆, (9)
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where Σ∗
0 is of the form of Eq. 2 with L replaced by

L∗ .= κ(σ2 + µ) and it can be block diagonalized; ∆
is given by:

∆ =




0 0 0 −κµ
0 0 −κµ 2κν
0 −κµ 4µ + 〈ξ2〉 2(µ + ν)

−κµ 2κν 2(µ + ν) 〈η2〉


 ,

with µ
.= 1

2 〈yξ〉, ν
.= 1

2 〈yη〉.
∆ generates x-y phase space coupling terms in the beam

matrix at the exit of the RTFB transformer. It also modifies
the two transverse emittances of the flat beam. As an exam-
ple, we use the same initial beam matrix as used in previous
section, plus ∆ induced by the RF gun coupler kick [10]:

∆ =




0 0 0 0
0 0 0 0
0 0 0 a1σ

2
−

0 0 a1σ
2
− a2

1σ
2
− + (ka2σyσz)2


 ,

where σ2
− = σ2

y − h2, σy is the vertical rms bunch size,
h the difference in vertical direction between the geome-
try and the electro-magnetic axes due to the RF coupler
kick, k the rf wave number, σz the rms bunch length,
a1

.= αksin(kl)sin(2kzm), a2
.= αksin(kl)cos(2kzm),

where l = zf−zi, zm = l=zf+zi

2 , zi and zf be the start and
end of the coupler region, α .= eE0

2mc2k [11], where E0 is the
gun peak accelerating field, m the electron mass. Take the
following typical values at FNPL:

f = 1.3 GHz → k = 27 m−1,

E0 = 35 MV/m → α = 1.27,
σz = σy = 1 mm,

h = 1 mm [12],
zi = 0.11 m, zf = 0.19 m → zm = 0.15 m, l = 0.08 m,

ε0
y = 1 mm mrad.

All the elements of ∆ matrix vanish apart from ∆44 =
7.65 × 10−10. For a beam without energy spread, this in-
creases the smaller one of the two transverse emittances of
the flat beam by 30%. The emittance ratio drops from 2237
to 1715, see Fig. 2 for the emittance ratio and horizontal
emittance as a function of fractional momentum spread.

SUMMARY
We have shown that both the chromatic and asymmetric

effects induce some residual x-y coupling downstream of
the RTFB transformer, comparing to the symmetric beam
without energy spread case. However the transverse emit-
tances calculated when these two latter effects are consid-
ered remain constant in the downstream transport line, as
long as no element in the beam line introduces x-y cou-
pling.

As far as chromatic effects are concerned, we find our
simple analytical treatment provide some insight regard-
ing the dependencies of the transverse emittances on chro-
matic effect. Our predictions are in decent agreement with
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Figure 2: Asymmetry in the initial beam matrix caused by
gun RF coupler kick effects emittance ratio (top) and hori-
zontal emittance (bottom).

simulations taking into account that our model assumes the
quadrupoles to be thin lenses. Regarding the impact of RF
asymmetries, we have estimated the effects on the flat beam
emittances but not yet compared with simulations.

The next step will be trying to find a possible cure for the
aforementioned limiting effects on the round-to-flat beam
transformation.
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