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Abstract

Three dimensional radiation field of the free-electron
laser is numerically studied. The radiation field is expanded
by using the Fourier expansion coefficients to satisfy the
free space wave equation so that the field could be solved
semi-analytically. The final form of the semi-analytical so-
lution is then integrated to get the physical properties of ra-
diation field. Instead of using Lagrangian variables, the Eu-
lerian variables, for the electron beam density, is used and
numerically integrated. The shape of three-dimensional ra-
diation field according to the wiggler distance and to the
size of transverse dimensions are obtained. Magnitudes of
the radiation field according to the transverse domain, the
wiggler distance, the number of terms of Fourier expansion
and the various radiation wavelength are investigated.

1 INTRODUCTION

For the one-dimensional free-electron laser (FEL) study,
a number of articles have been published until now[1, 2,
3, 4, 5, 6, 7, 8, 9]. But since the FEL experiments are
complex, simple one-dimensional theory is not often ad-
equate. Therefore, in the field of experimental FEL, the
importance of three-dimensional numerical simulations is
emphasized in design, optimization and interpretation. For
the FEL based on the self-amplified spontaneous emission
(SASE), understanding 3D effects and 3D simulation are
becoming to be more important in constructing a FEL[10].

In studying the transverse variation of the wave equa-
tion of the FEL, many different numerical and analytical
methods are employed such as the transverse mode spectral
method[11, 12, 13], the transform spectral method[14, 15],
the finite difference method[16], and the Lienard-Wiechert
potential method[17]. Recently, in Ref. [13], the three-
dimensional time dependent transverse mode scheme was
rather expanded to include longitudinal mode competition.

The transform spectral method evaluates the transverse
second order differentiate terms of vector potential in the
wave equation. And the method involves representing the
solution of the radiation field as a truncated series of known
functions of the independent variables. The method has a
great advantage to reduce the wave equation to a first order
differential equation, where the current can be described
in terms of the Lagrangian or Eulerian variables, and the

current terms can be evaluated analytically or numerically.
The advantages of the transverse spectral method such as
analytical handling of the free space wave propagation, eas-
ily including the transverse particle motion exactly, lending
to analytical and semi-analytical solutions, and automatical
including the transverse boundary conditions in the waveg-
uide mode expansion can be used in the transverse trans-
form spectral method.

2 WAVE EQUATION

The vector potential representing the linearly polarized
wiggler and radiation field are expressed as follow: The lin-
early polarized wiggler is the most common wiggler field.

Aw(y, z) = Aw(z) cosh(kwy) cos[k̄w(z)] (1)

where k̄w(z) =
∫ z

0
kw(z′)dz′, Aw(z) and kw(z) are the

slow varying amplitude and wave number of the wiggler.
For kwy � 1, the amplitude of wiggler can be approxi-

mated as Aw(z) cosh(kwy) ∼ Aw(z).
The radiation field can be expressed as

AR(x, y, z, t) = −1
2
A(x, y, z)ei(kz−ωt) + c.c, (2)

where

A(x, y, z) = − 1
DxDy

L,M∑

l,m=0

Al,m(z)ei(klx+kmy)êx (3)

is the slowly varying amplitude of the radiation field ex-
pressed by the Fourier series, Al,m is the complex am-
plitude of the normal modes. The domain for the ra-
diation field is −Dx/2 ≤ x ≤ Dx/2 and −Dy/2 ≤
y ≤ Dy/2 and the boundary conditions are periodic, and
kl = 2πl/Dx and km = 2πm/Dy .

The radiation field, Eq. [2] should satisfy the wave equa-
tion for FEL as

(

∇2
⊥ +

∂2

∂z2
− 1

c2

∂2

∂t2

)

AR = −4π

c
J⊥. (4)

The orthogonality condition over the radiation field do-
main is

∫ Dx/2

−Dx/2

ei(kl−kl′ )xdx

∫ Dy/2

−Dy/2

ei(km−km′ )ydy =

DxDyδll′δmm′ . (5)
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Using the slow varying approximation and the orthogonal-
ity condition, and dotting both sides with êx yield

[
d

dz
− k2

l + k2
m

2ik

]

Al,m =

− i

k

2ω

c

∫ 2π/ω

0

dt

∫ Dx/2

−Dx/2

dx

∫ Dy/2

−Dy/2

dy

·Jxe−i(klx+kmy)e−i(kz−ωt). (6)

The current density Jx can be formulated in Eulerian vari-
ables as well as in Lagrangian variables[18]. For the former
case in the transform spectral method, the right-hand side
of Eq. [6] has to be evaluated numerically.

A general form of current density in FEL is given by[19]

Jx(x, y, z, t) =
w2

b

4πc

∫ ∞

−∞
dt0

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0e

iωwt

·θ(x0, y0)δ(x − x̃)δ(y − ỹ)δ(t − t̃)
Aw(ỹ, z)

γ̃
, (7)

where wb = (4πe2n0/m0)1/2, n0 is the beam density,
θ(x0, y0) is a function describing the initial transverse elec-
tron beam profile and γ̃ is the total electron energy. Ne-
glecting the gradients in the wiggler, i.e., kwy0 � 1, the ze-
roth order transverse electron coordinates x̃, ỹ are replaced
by the Lagrangian independent variables x0 and y0. Choos-
ing a Gaussian electron beam profile, i.e., θ(x0, y0) =
exp[−(x2

0 + y2
0)/r2

b ], and integrating the transverse coor-
dinates and the time over the periods, the electron beam
density, Eq. [7], was then numerically integrated. It should
be noted that the Gaussian electron beam profile is indepen-
dent of axial distance. Physical property, e.g., self-focusing
of radiation field cannot then be studied with this beam
profile. An alternative way to express the beam profile is
the Gaussian-Hermite expansion[18], about which we are
studying:Part of results will be shown in Fig. 2.

Using the Gaussian beam profile, the final form of the
first order differential equation for the Fourier expansion
coefficients, Al,m, can be written as,

dAl,m

dz
= αAl,m + βζη cos(kwz)eikz (8)

where

α = − i

k

k2
l + k2

m

2

β =
i

k

ωωwω2
b

4π2(ω + ωw)γc2
Aw

(
ei2π ωw

ω − 1
)

ζ =
∫ Dx/2

−Dx/2

dxe
−iklx− x2

r2
b

η =
∫ Dy/2

−Dy/2

dye
−ikmy− y2

r2
b cosh(kwy).

The Eulerian formulation of the current is known to be
inferior to the Lagrangian formulation because the numer-
ical transformations of Eq. [6] require the current to be

evaluated at prespecified grids, but the problem can be re-
duced if the number of grids used across the electron beam
is large, which in turn requires a larger number of terms in
the expansion. The Eulerian formulation used in this study
is somehow superior in the sense of the speed of computa-
tion, if the differential equation is solved analytically. By
reducing the computational time, the number of grids used
across the electron beam and then the number of expansion
terms can be enlarged.

3 RESULTS AND DISCUSSION

The spectral transform method was applied to show
the behavior of radiation field employing Fourier expan-
sion, and choosing Gaussian beam profile with a radius
of 2.25 × 10−2 cm. The domains for the radiation field,
Dx and Dy , were not fixed but checked for several values:
The main working value was 5.0 × 10−4 m. Predefined
wavelengths were used to compute the correspondent field.
Wiggler period of λw = 2.8 cm, axial electron velocity of
vz = 0.99c, electron beam density of n0 = 1.3 × 1011

cm−3 and Aw = 2.2 × 103 statvolts were used.

Figure 1: Variation of the radiation amplitude peaks ac-
cording to the number of Fourier expansion terms. The
peaks saturate as the number increases (Solid curve is for
eye guide). (inset: Behavior of the Fourier expansion coef-
ficients in transverse coordinates.)

Fig. 1 shows the peak values of slow varying ampli-
tude, |A(x, y, z)|, corresponding to the number of terms in
Fourier expansion. The peak values begin to saturate from
around L = 20 (L and M were taken to have the same val-
ues for all computations in the study.) The Fourier expan-
sion coefficients according to the l and m were shown in
inset. The absolute values of the coefficients are gradually
decreased with wiggling as l and m increased. Thus fifty
terms of expansion are thought to be enough to demonstrate
the physical behaviors of radiation field.

The peak values of slow varying amplitude as a function
of axial distance obtained at z = 1.5, 3, 4.5 and 6 m are
shown in Fig.2. Contrary to the case of the transverse spec-
tral method, the peak seems to increase monotonically. The
radiation is being amplified all the way of axial distance.
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Figure 2: Variation of the radiation amplitude peaks ac-
cording to the axial distance. The peaks monotonically
increase along the axial distance (Solid curve is for eye
guide). [Inset: Typical shape of radiation amplitude com-
puted by using Gauss-Hermite (up) and Gauss (down)
beam profiles.]

Figure 3: Variation of the radiation amplitude peaks ac-
cording to the radiation domain. The peaks exponentially
decrease as the domains increase. (inset: Amplitude peaks
according to the radiation wavelength. The peaks show a
monotonic increment as the wavelength increases.) (Solid
curve is for eye guide).

In the inset, a typical figure of output is shown at z = 3
m. The transverse domain of radiation, in this case, is sym-
metric: We checked the asymmetric case, it turned out that
the shape of radiation amplitude maintained the symme-
try. One of the disadvantages of the Eulerian formulation
is that, since the beam profile does not depend on the axial
coordinate, the self-focusing property of the radiation field
could not be observed. Fig. 3 shows the peak values, at
z = 3.0 m, as a function of symmetric radiation domain.
As was mentioned above, the amplitude was checked to
be symmetric even if the asymmetry cases of domain, As
shown in the figure, the values exponentially decreased as
Dx (Dy) increased. It is believed that the large domain in-
tensity generates large peak to keep the peak density con-
stant. In the inset of Fig. 3, energy conservation of the
formulation is shown at z = 3.0 m. As the wavelength of

output increased the peak values also increased to conserve
the energy.

In summary, this paper illustrated the physical proper-
ties of three-dimensional radiation field using the transform
spectral method. Even if the method has disadvantages
that the numerical transformations require the current to be
evaluated at prespecified grids, the fast computation speed
of this method can compensate for the disadvantage. Peak
values of the radiation amplitude were mainly observed:
1) The values saturate as the number of expansion terms
increased, 2) Those increased monotonically along the ax-
ial distance, 3) The domain intensity plays a role making
those decrease exponentially, 4) The Energy conservation
was conformed by calculating the peaks according to the
wavelengths of radiation.
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