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Abstract 
We study the high frequency behavior of a Side 

Coupled Linac (SCL) formed by a large number of 
accelerating cells. The SCL has as basic bricks copper 
plates (tiles) containing on one side half an accelerating 
cell and, on the reverse side, half a coupling one. The 
electromagnetic behavior of a single tile can be 
represented by a two-port device made of two lumped 
resonant series circuits coupled by a mutual inductance. 
The overall SCL behavior is so described by a two-port 
device chain. The transmission matrix of this chain is 
studied. Our goal is to study the overall behavior of an 
SCL structure in order to find out tools useful for the 
design, the analysis, the diagnostics and the correction of 
the single cells. In this paper, we consider two-port 
devices which are similar but exhibit slight differences, 
essentially due to fabrication errors which produce 
deviations from cell parameter nominal values. The chain 
transmission matrix has been studied by means of a 
perturbation analysis of the circuit parameters. Results on 
the relevant parameters, resonance frequency of each 
mode and accelerating voltage in the whole structure are 
presented. 

1 INTRODUCTION 
The SCL�s [1] look quite promising since they may 

deliver the highest accelerating gradient to low energy 
proton beams. Because of this feature, they are shorter 
and more compact than the usual linacs; as a consequence 
they are quite suitable for accelerating proton beams for 
deep tumour cancer therapy [2] (protontherapy) in 
hospital environment [3]. A 3GHz SCL accelerator 
prototype for low energy protons (60MeV) has been 
recently designed, built and successfully tested [4]-[6]. 
Furthermore the excellent results obtained with the 
mentioned prototype enlarged the application area of 
these accelerators towards lower energies or higher 
frequencies (more compact realizations). 

The fabrication tolerances play a crucial role in the 
performances of these devices because of the extremely 
high frequency of the RF feeders. In fact, the fabrication 
errors produce deviations from the design nominal values 
of the most relevant parameters. 

Even if we are dealing with devices working in the 
Gigahertz range, lumped circuit representation very well 
suits the SCL behavior [7]. We resort to the transmission 
matrix representation of the two-port device and we 

investigate on the overall behavior of the SCL. In the case 
of N identical two-port device chain, the whole system 
exhibits N resonant frequencies, each characterized by its 
own mode (phase advance). These frequencies are given 
by simple analytical formulas [7]. In reality the situation 
is more intricate: after machining the tiles are unequal and 
the lumped parameter values of the device exhibit slight 
differences from tile to tile; furthermore these parameters, 
after assembling and brazing the tiles, exhibit additional 
random errors. At this stage it is impossible to make 
direct measurements of the single two port device, the 
only measurement allowed being on the whole system.  

The transmission matrix of a chain of similar, but 
slightly different, two-port devices is studied here. The 
aim is to get information on the single cell parameters 
from the parameter measurements of the overall system 
(resonant frequencies, accelerating voltages, etc). We 
adopt the perturbation technique applied to transmission 
matrices. 

2 THE MODEL  
In general we describe the assembled tiles by means of 

a chain of two-port devices each denoted by the index p. 
We allow for the transmission matrix representation, so 
that the transmission matrix of the whole chain is just the 
ordered product of the transmission matrix of each cell 
Tp[1]. The quantity Tp can be defined as: 
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We suppose that each two-port device is composed by 
two lossy resonant series circuits [7] as shown in Fig. 1. 

 
Fig.1. The generic two-port device representing two 
resonant series circuit coupled by a mutual inductance. 
 

The two-port device parameters Lp, Cp and Mp differ for 
different values of p; in addition, as shown in Fig.1 where 
the indices  and l  stand for right and left, in each two-r
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port device the r.h.s. inductors and capacitors have 
different values indicating different fabrication errors. As 
a first approximation we may assume that the resistance 
does not depend on index p. It is straightforward to 
calculate the values of the transmission matrix elements 
of such a device. 

Therefore we may define for each tile two resonant 
frequencies and a quality factor as 

pp
p

CL
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=ω     and   
p

p
p C

L
R
1

=Q   (2), 

for the  l.h.s  and  r.h.s. of  the p-th two-port device. 
A fundamental point of this model is to allow for finite 

losses, which are represented by the resistance R. This 
term is essential in order to evaluate the voltage behaviour 
at the accelerating gaps. 
By definition the nominal resonant frequencies are 
calculated assuming that all tiles are equal: 
 Lp=L/2  ;  Cp=2C  ;  Mp=M  ;  Qp = Q (3). 

Resorting to formulas, which can be found in the 
literature [7,8,9] we get, without losses: 
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where the coupling coefficient K and the angular 
frequency  ω0  are defined as : 
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The quantity (s-1)π/N can be seen as the phase advance 
of the field along the chain and it is a characteristic of 
each mode. We are particularly interested in the so-called 

/ 2π  mode (s=1+N/2). In fact, because of its stability 
with respect to the errors, it is chosen for SCL  operation. 

The phase advance / 2π  of this mode is such that any 
second cavity is empty of em-energy. The empty cavities 
are called coupling cavities (c.c.), the other ones are the 
accelerating cavities (a.c.). 

Another useful formula is the impedance term of the 
transmission matrix of the whole system where all tile 
parameters have the nominal values : 
 ( ) ( )1212

N
TOT TT =  (6). 

It is convenient to have an equation in a factorised form 
in which we do not neglect the dissipative term: 
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3 PERTURBATIVE MODEL  
In this section we want to find the tools for the 

optimisation procedure using the system parameters 
which can be measured after the final assembly of the 
tiles. 

In the following we will show how is possible to 
describe the real structure taking into account the errors 

due to fabrication tolerances by means of a perturbative 
technique. In the second section, we assume a finite 
quality factor (Q), while in the first one this parameter is 
kept infinite. 

3.1 Perturbed resonant frequency 
Consider now a chain of N different two-port devices, 

where N is an even number. The overall transfer matrix 
is: 

 1

.
N

TOT p
p=

= ∏T T
 (9), 

where the product is ordered. 
We look for the resonant frequencies without any 

restriction to the mode. 
If the cell parameters are slightly different, the problem 

can be tackled by means of a perturbation technique. The 
equation to be solved is: 
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where p∆T  is the perturbation in the matrix pT  and Ωs is 
the unperturbed resonant frequency of the s- mode. 

To a first order approximation, the above equation can 
be written:  
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From eq.(11), we can get the solution for the perturbed 
frequency : 
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If we define 
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after some algebra, we get the following expression for 
the perturbed frequency of the modes as a linear 
combination of the perturbed resonant frequencies of the 
cells:  
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In the previous system (15) the equations of index s  

and N+2-s, are identical. As consequence, the number of 
the independent equations are: 
 ( )( )2/1+NE    (16) 
where the symbol E(x) means the first integer equal or 
larger than x. This property implies that the system (15) 
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cannot be solved respect to ∆ωp. However defining the 
new unknown 
 pNpp −+∆+∆=∆ 2ωωω  (17), 
equation (15) can be rearranged in the following form 
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where E stands for (16). In equation system (18) the 
number of unknowns ( pω∆ ) is equal to the measurable 
quantities ( sΩ∆ ), and the determinant of system matrix M 
is finite; so that the system can be inverted. The inversion 
can be done analytically. It can be shown that: 

 DMDM
N
41 =−  (19) 

where D is a diagonal matrix with Dii=1/2 (i=1,1+N/2) 
and Dii=1 otherwise. 

It is interesting to analyse the case of the (π/2)-mode 
(case s=1+N/2). According to (15), the deviation of the 
mode frequency is: 
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where the prime index means the sum of only odd terms; 
this means that only the accelerating cells are involved in 
the detuning. We learn from (20) that it is not necessary to 
tune each single cell. 

3.2 Feeding current 
Another interesting feature of the optimisation for an 

SCL  is to maximise the feeding current as a function of 
the tuning. We consider an SCL operating on π/2 mode 
and with the feeding in the system central cell; this 
implies that cell number N is the quadruple of an integer 
number.  

It is possible to show that the current I0  and the feeding 
voltage V0  are linked by  

 

121222/111

2/

1
00










































= ∏∏∏

=+==

N

p
p

N

Np
p

N

p
pVI TTT  (21) 

The denominator of the previous equation contains two 
terms: one unperturbed equal to eq.(7) and a perturbed 
one which has to be calculated without losses similarly to 
eq. (10)  but  for the π/2 mode case. 

To a first order approximation we can neglect the 
resistive part and  it is possible to show that the numerator 
is equal to one.  

From these assumptions  and after manipulations of the 
above formula, we obtain:  
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where the characteristic admittance is: LC20 =Y . The 
previous formula is most interesting because it shows a 
dependence of the current on the detuning errors. From 
the eq. (22) it is simple to get the accelerating voltage on 

the gaps multiplying the vector (V0, I0) by the appropriate 
transmission matrices. This multiplication will not 
introduce any additional resonance. 

4 CONCLUSIONS 
It is very important for a good design and operation of 

an high frequency Linac to have a good model which 
takes into account the real e.m. parameters of the structure 
(errors in the distributed parameters,  resistive losses�). 

In this paper we shown our perturbative model and we 
found out the formula to compute the mode frequency 
deviation as a function only of sum of the detunings of the 
symmetric accelerating cells. This is an important result 
because we learnt that at first order approximation the 
system is sensitive only to the sum of errors in symmetric 
cells. Particularly we carried out a simple formula for the 
π/2-mode which shows that for tuning it is sufficient to 
minimise the mean value frequency deviation. 

We calculated for the same mode the feeding current 
taking into account the resistive losses. The formula is 
most interesting since it shows that the current 
maximisation is sensitive to the detuning mean value 
magnified by the quality factor Q. 

On the base of these simple formulas, we can think to 
extend the feeding current expression to the other modes. 
Similarly we may calculate in a very simple way the 
accelerating gap voltage. 
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