

Analysis of Low RRR SRF Cavities

Katrina Howard, Daniel Bafia, Young-Kee Kim, Anna Grassellino

IPAC'22

14 June 2022

In partnership with:

Introduction to Superconducting Radio Frequency (SRF) Cavities

- SRF cavities are resonant structures made from high purity niobium that generate the accelerating electric field along the beamline inside particle accelerators
- Purity measured by residual resistance ratio (RRR)
- Cavity performance determined by first ~100 nm of material
- Goals of SRF studies is to design surface profile to increase:
 - quality factor (efficiency)
 - accelerating gradient

$$Q_0 = \frac{G}{R} \sim \frac{\text{Number of oscillations to}}{\text{dissipate stored energy}}$$

Motivation for Low RRR Investigation

$$R_{S}(T) = R_{res}(< 1.5 K) + R_{BCS}(T)$$
Temperature
Independent
Temperature
Dependent

- Many SRF studies follow a "clean bulk dirty surface" technique to optimize the BCS resistance by adding extrinsic impurities
 - Low temperature bake diffuses oxygen into surface
- What role do intrinsic impurities serve?
 - Lower the mfp so may experience low BCS resistance behavior
 - Might perform similar functions as extrinsic impurities which have been shown to improve performance

Eacc (MV/m)

Low RRR Analysis Components

- Baseline testing on 1.3 GHz TESLA-shaped single-cell low RRR (= 61) cavity in electropolished (EP) condition
 - Quality factor vs accelerating gradient at 2 K and low T (< 1.5 K)
 - Residual resistance vs gradient
 - BCS resistance vs gradient
 - Frequency vs temperature
- Repeat testing after surface treatment
 - Low temperature bake (120 °C x 48 hours)

Cavity testing facility at Fermilab

Quality Factor vs Accelerating Gradient at 2 K

Electropolished

- Low RRR has slightly lower Q₀ at all gradients and does not reach as high gradient
- Q₀ slope begins sooner but less sharp

- Low RRR does not experience "bump" of anti Q₀ slope at low gradient
- Performance is extended from EP but not as far as high RRR

 Fermilab

Quality Factor vs Accelerating Gradient at 2 K

LTB improves performance of low RRR cavity but in a different way than we see in high RRR cavities

- Performance of all cavities is similar at medium gradients
- LTB delays Q₀ slope in low RRR but less extreme difference than high RRR
- Low RRR does not experience anti Q₀ slope after LTB

Residual Resistance vs Accelerating Gradient

Low RRR almost always a few $n\Omega$ higher than high RRR

- Similar at low field but then low RRR steadily increases
- Parallel at high field

Residual Resistance vs Accelerating Gradient

$$R_{res} = \frac{G = 270 \,\Omega}{Q_0(low \,T)}$$

Low RRR and high RRR have similar residual resistance response to LTB

- Low RRR EP and LTB nearly equal until ~20 MV/m
- High RRR EP and LTB same at medium field
- Low RRR almost always larger residual resistance than high RRR

BCS Resistance vs Accelerating Gradient

$$R_{BCS}(2K) = R_s(2K) - R_{res}$$

Electropolished

Low RRR is significantly lower except at high field

- High and low RRR equal until ~10 MV/m
- Low RRR has lower BCS resistance at mid field

BCS Resistance vs Accelerating Gradient

$$R_{BCS}(2K) = R_s(2K) - R_{res}$$

Low RRR exhibits low BCS behavior

- EP → LTB causes downright shift in BCS resistance
- Low RRR BCS is lowest at mid field
- Any benefit of dirty surface is lost at high field

10

Frequency vs Temperature

 EP and LTB experience ~7.5 kHz change in resonant frequency through T_c

- Dip in EP and LTB → doped behavior
- Experimental T_c for both ~9.28 K

Change in Penetration Depth vs Temperature

$$\Delta\lambda(T) = -\frac{G\Delta f(T)}{\mu_0 f^2(T_0)}$$

Need to convert to penetration depth to use fitting program to find mfp and gap

- $G = 270 \Omega$ (geometry factor)
- $\Delta f(T)$ = change in frequency vs temperature
- μ_0 = magnetic permeability
- f(T₀) = constant resonant frequency at low temperature

6/14/2022

Nonlinear Fitting using SRIMP Program

Electropolished

- $mfp = 522 \pm 29 nm$
- gap = $2.17 \pm .03$

6/14/2022

- mfp = 64.7 ± 6.9 nm → decrease suggests decreased BCS resistance

Summary

- Low RRR cavity in EP condition behaves differently than high RRR EP
 - Intrinsic impurities do have significant impact on RF behavior
- Low RRR cavity in LTB condition behaves similarly to high RRR LTB with some offset
 - Addition of oxygen into RF layer allows for higher quality factor and accelerating gradients without increasing the residual resistance from EP
 - How does oxygen behave differently in a Nb lattice with more impurities?
- Low RRR shows:
 - consistently high residual resistance
 - low BCS resistance, especially at mid gradient
 - dip on frequency versus temperature near Tc
 - decrease in mfp and increase in gap from EP \rightarrow LTB

Next Steps

- Processing additional data from LTB testing
 - Temperature-mapping to observe local heating and quench
- N-doping cavity
- Sample study on low RRR material
 - Process coupons to establish EP, LTB, and N-doped conditions
 - Secondary-ion mass spectrometry to observe impurity profile
 - Microscopy to characterize surface

Questions?

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High **Energy Physics. This work was** supported by the University of Chicago.

6/14/2022

