

Measurements of Collective Effects Related to Beam Coupling Impedance at SIRIUS

Murilo Barbosa Alves LNLS Accelerator Physics Group (FAC)

murilo.alves@Inls.br

Bangkok - Thailand, June 12-17, 2022

- SIRIUS main parameters and timeline overview;
- SIRIUS Impedance Budget:
 - Methods employed in impedance and wake calculation;
 - Longitudinal Impedance: Effective Impedance and Loss Factor;
 - Transverse Impedance Budget: Tune-shifts with current;
- Longitudinal Single-Bunch Effects:
 - IBS Model and Calculation;
 - Wakes+IBS iteration algorithm;
 - Streak Camera measurement: setup and analysis;
 - Comparison of results with simulation;
- Transverse Single-Bunch Effects:
 - Model calculations and measurement setup;
 - Results and comparison with model;
- Summary and Next Steps.

Main Design Parameters

EM dipoles

B=0.58 T

PM superbend

B=3.2 T, ε_c =19keV

Storage Ring parameters		
Beam energy	3.0 GeV	
Circumference	518.4 m	
Lattice	20 x 5BA	
Current, top up	350 mA	
Hor. emittance (bare → w/ids)	250→ 150 pm.rad	
Energy spread	0.084 %	

EM

dipoles

B=0.58 T

Quadrupole

doublet

5-fold symmetric optics $\begin{cases} 15 \text{ low } \beta \text{ sections} \\ 5 \text{ high } \beta \text{ sections} \end{cases}$

Low-beta

Quadrupole

triplet

Brief timeline overview

Impedance and collective effects measurements started only very recently

[1] L. Liu et al., "Status of Sirius Operation", TUPOMS002, this conference.

[2] X. R. Resende, M. B. Alves, F. H. de Sá, L. Liu, A. C. S. Oliveira, and J. V. Quentino, "Sirius Injection Optimization", **THPOPT038**, this conference.

SIRIUS Impedance Budget

- All in-vacuum components design were optimized considering its impedance contribution whenever possible;
- All of them have 2D or 3D-model-based impedance calculations included in the budget;
- Multi-bunch dynamics is very influenced by Petra 7-Cell temporary cavity (coupled-bunch instabilities and tune-shifts).
- Only broadband contributions will be considered in this work (single-bunch measurements). Wake-lengths of 0.5 m;

Type of Impedance	Method of Calculation	Wake source	Impedance used in frequency- domain calculations	Wake used in time-domain simulations
ResWall [1] and CSR [2]	Semi-analytical formulas	Wake-function of point-like charge	Use impedance as it was calculated	Obtained from convolution of wake- function with small Gaussian bunch (σ = 40 μ m) to filter out high frequencies
Geometric	Numeric Solvers [3, 4]	Wake-potential of Gaussian bunch $(\sigma = 500 \mu m)$	Obtained from deconvolution of wake and source-bunch spectrum (f _{max} = 150 GHz)	Use wake as it was calculated

^[1] N. Mounet, "The LHC Transverse Coupled-Bunch Instability", Ph.D. thesis, École Polytechinique Fédérale de Lausanne, Lausanne, Swiss, 2012.

^[2] J. B. Murphy, S. Krinsky, and R. L. Gluckstern, "Longitudinal wakefield for an electron moving on a circular orbit", Particle Accelerators, v. 57, n. BNL-63090, p. 9–64, 1997.

^[3] ECHO web site, https://echo4d.de/.

^[4] GdfidL web site, http://www.gdfidl.de/.

Longitudinal Impedance Budget

Transverse Impedance Budget

IBS Model and Calculation

· Storage ring linear optics and equilibrium parameters model:

Params	Value
ε ₁₀	247.9 pm.rad
(v_x, v_y)	(49.0777, 14.1414)
ε ₂₀	4.7 pm.rad
$\varepsilon_{20}/\varepsilon_{10}$	1.9 %
$\sigma_{\delta 0}$	0.0851 %
RF Gap Volt.	1.575 MV
σ_{s0}	3.423 mm

- · IBS Algorithm:
 - Starts with ϵ_{10} , ϵ_{20} , $\sigma_{\delta0}$ and some current-dependent value for σ_s ;
 - Calculate $\tau_{IBS}(s)$ with Bjorken-Mtingwa [1] formulas, using β_1 , β_2 , α_1 , α_2 , η_1 , η_2 , η_1' , η_2' from Edwards-Teng modes;
 - Use $<\tau_{IBS}>$ at each time-step to update ϵ_1 , ϵ_2 and σ_δ and evolve them in time until stationary state.
- This way ε_1 and ε_2 will evolve independently in time with no need to force coupling ratio between x-y planes on each iteration and contribution of η_v is considered through η_1 and η_2 .

[1] K. Kubo, S. K. Mtingwa, A. Wolski, "Intrabeam scattering formulas for high energy beams", Phys. Rev. ST Accel. Beams, vol. 8, issue 8, p. 081001, Aug. 2005.

Wakes+IBS Iteration Algorithm

- For each current:
 - 1- Solve Haissinski equation with wakes, using natural energy spread;
 - 2- Use resulting longitudinal distribution to supply initial bunch length for IBS calculation (keep initial values of other equilibrium parameters equal to their natural values);
 - 3- Use resulting energy spread to solve Haissinski equation again;
 - 4- Iterate 2 and 3 until energy spread converges.
- Diagnostic beamline to measure energy spread and emittances not available yet.
 - Resulting current-dependent equilibrium parameters explain well lifetime measurements [1];
- Limitations:
 - Only works below microwave instability threshold;
 - Assume Gaussian distribution in growth rates calculations.

[1] M. B. Alves, F. H. de Sá, L. Liu, and X. R. Resende, "Beam Lifetime Measurements in Sirius Storage Ring", WEPOTK055, this conference.

Analysis of Streak Camera Measurements

- Streak-camera from previous LNLS machine (diff. RF freq.)
- Data acquired for 100 ms of exposure time. Effect of synchrotron oscillations expected to be small (10% of natural bunch length);
- Data analysis from streak camera to calculate moments:
 - Offline conversion (pixels to mm) and analysis;
 - Projection of a very thin Region Of Interest (ROI);
 - Fitting of known probability density functions:
 - Try to fit the distribution tails as well as possible;
 - Capture the skewness of the distribution;
 - Deconvolve variance with measured slit size;
- Data tails and skewness captured by fitting a skew q-Gaussian [1]:

[1] M. Tasaki, K. Koike, "On skew q-gaussian distribution", International Journal of Statistics and Systems, vol. 12, num. 4, pp. 773–789, 2017.

Measurements and Comparison with Model

- Two data sets acquired (one month apart):
 - Data Set 1: Single-bunch in the machine, maximum measurement resolution scale used:
 - Data Set 2: Two bunches, one test bunch (high charge) and one reference bunch (low charge, 20 μA). Allow synchrotron phase shift measurement, lower resolution for bunch length measurement.
- Large difference in bunch length for both measurements, including zero-current bunch length. Possible conversion scale error.
- Synchronous phase shift well explained at low currents but diverges above 1 mA. More measurements needed.
- Impedance budget fits well bunch-lengthening data, but no resolution so far to check validity of iterative Wakes+IBS scheme;
- Model does not predict microwave instability for this current range. Need of energy spread measurement to check this prediction.

Transverse Single-Bunch Tune-shifts

- Model Calculations:
 - Standard mode-coupling theory used (solution of linearized Fokker-Planck equation) [1];
 - Assumes beam is gaussian and does not account for synchrotron or betatron tune-spread;
 - Current-dependent bunch length and average synchrotron tune were taken from model with Wakes+IBS discussed previously.
- We performed measurements for several values of chromaticity with current ranging from 2.1 mA down to 0.05 mA.
- Setup for horizontal/vertical measurements:
 - For each current and chromaticity, kick the beam with the horizontal/vertical pinger;
 - Measure turn-by-turn data with the bunch-by-bunch system (Dimtel iGp12 processor);
 - Take the DFT of the data.

Measurements and Comparison with Model

Summary and Next Steps

- Good agreement between experimental data and model (no fitting parameters)
 - Impedance budget was obtained from 2D and 3D models of every in-vacuum component;
 - Emittances and energy spread from nominal values + measurements of linear optics (betatron coupling and vertical dispersion);
 - Effects of Wakes and IBS considered simultaneously with simplified approach;
 - Tune-shifts calculated with a simple and well-known theory;
 - Inclusion of Wakes+IBS scheme necessary for good agreement.

Next steps:

- Measure the energy spread and emittances;
- Perform further synchrotron phase shift measurements;
- Measure localized impedance;
- Characterize multi-bunch dynamics;

