

Growing Expectations for New Physics

Chris Polly -- Fermilab 13th International Particle Accelerator Conference, Bangkok, Thailand 13 June 2022

Two particle physics Nobel prizes awarded in last 10 years!

- François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" (2013)
- <u>Takaaki Kajita</u> and <u>Arthur B. McDonald</u> "for the discovery of neutrino oscillations, which shows that neutrinos have mass" (2015)

Two particle physics Nobel prizes awarded in last 10 years!

- François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" (2013)
- <u>Takaaki Kajita</u> and <u>Arthur B. McDonald</u> "for the discovery of neutrino oscillations, which shows that neutrinos have mass" (2015)

The Higgs motivates the search for new physics

- Higgs itself not new
 - Predicted in 1964
 - − Precision EW fits \rightarrow low mass
 - Conclusive discovery in 2012
- Naturalness puzzle suggests new physics
- Strongly motivates SUSY

LHC Run 2 and HL-LHC continue to push into the unknown

			Channel	Run-2 Exclusion	HL-LHC Discovery	HL-LHC Exclusion	Wes ∑ X ² → W Z ² Z X ² → 3.4 • MET feed state ATL45 Simulation Preliminary G 1000 – 614 TeV, 300 B ² ATA5 1 TeV, 58 B ²		
Wino-like electroweakinos		Wino-like $X_1 X_2^0$	WZ, Wh (3 leptons)	650 GeV	920 GeV	1150 GeV	ATLAS 13 FeV, 56 b ⁺ BOO BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction BOO Construction		
		Wino-like $X_1 X_2^0$	h->bb (1 lep + 2 b-jets)	740 GeV	1080 GeV	1280 GeV	200 800 600 700 800 900 1000 1100 1200 1300 1400 mg ² ₁ , g ² ₂) [CeV]		
		Wino-like $X_1 X_2$	W + X^0_1	400 GeV	600 GeV	840 GeV	$ \begin{array}{c} \text{CMS } \textit{Fmass2} \text{Simulator Prelimany} 3 \text{ab}^{\prime} \left((14 \text{ TeV}) \right) \\ \hline p \rightarrow \tilde{\chi} \tilde{\chi} (1 + pp \rightarrow \tilde{\chi} \tilde{\chi}, \tilde{\chi} \rightarrow \chi \tilde{\chi}, \tilde{\chi} \rightarrow \chi \tilde{\chi}, \tilde{\chi} \rightarrow W \tilde{\chi}, \tilde{\chi} \rightarrow \tilde{\chi} \tilde{\chi} \tilde{\chi} \rightarrow \tilde{\chi} \tilde{\chi} \tilde{\chi} \rightarrow \tilde{\chi} \tilde{\chi} \tilde{\chi} \rightarrow \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \rightarrow \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi} \tilde{\chi}$		
		Wino-like $X_2 X_4$	(Compressed higgsino + WW)			900 GeV	с - ² в 30 00 00 00 10 10 10 10 10 10 10 10 10 10		
	Stau & Stop	Compressed spectrum. Direct X1 X ⁰ ₂ prod.	Dilepton + MET	205 GeV	250 GeV	360 GeV	00 to the first t		
go		Stau pairs	$\tau_{had}\tau_{had}$	120-390 GeV	110-530 GeV	430 -730 GeV	$m_{\chi_2^0} = m_{\chi_1} [GeV]$		
~		Stop (Δm near m_{top})		300-630 (small ∆m) 1250 GeV	650 (small ∆m) - 1250 GeV	850 (small ∆m) - 1700 GeV	\$ 000 \$ 000 <td< td=""></td<>		
Sta		Stop (no stop decay to t)	bffX1 or cX1		2400 GeV	2600 GeV	300 200 100		
arks	Leptoquarks	Scalar LQ 3rd gen. Single production	τ + b	400 GeV	800 GeV	1130 GeV	100 200 300 400 500 600 700 800 900 1000 m(T) (GeV) HL-LHC projection 3000 00 (14 TeV) 10 CMS Projection		
ntodu		Scala LQ 3rd gen. Pair production	τ + b		1500 GeV	1518 GeV			
-		Scalar LQ pair prod.	tt -> μ/τ		1.2-1.7 TeV	1.4-1.9 TeV	0.2		
		2HDMa	4 top			TeV m _H =600GeV 350 GeV m _H =1TeV	100 100 100 100 100 100 100 100 100 100		
ل https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-018/ATL-PHYS-PUB-2022-018.pd									

- No signs of SUSY yet at the LHC
- HL-LHC will explore significantly higher mass scales
 - Extends mass reach by a factor of 2 or more for many models/channels

Summary presented by Kerstin Hoepfner at recent Snowmass workshop

The Higgs opens an unprecedented window in the search for BSM

- Higgs is extraordinarily unique, imbues mass to other particles
 - Unique discovery potential at high precision lepton collider

Sub 1% couplings

- Technical questions remain
 - Circular vs linear?
 - Technology?
 - Location?
 - Upgradability?

No question '**must do'** next step for HEP!

🚰 Fermilab

The Higgs opens an unprecedented window in the search for BSM

8 options actively under study

Name	Nominal COM energy and peak luminosity per IP at nominal energy		
FCC-ee	e+e-, \sqrt{s} = 0.24 TeV, L= 8.5 ×10 ³⁴		
CEPC	e+e-, \sqrt{s} = 0.24 TeV, L= 8.3 ×10 ³⁴		
ILC (Higgs factory)	e+e-, $\sqrt{s} = 0.25$ TeV, L= 1.35 $\times 10^{34}$		
CCC (Cryo Cooled Collider)	e+e-, \sqrt{s} = 0.25 TeV, L= 1.3 $ imes 10^{34}$		
CLIC (Higgs factory)	e+e-, \sqrt{s} = 0.38 TeV, L= 1.5 $ imes 10^{34}$		
CERC (ERL ee collider)	e+e-, \sqrt{s} = 0.24 TeV, L= 78 $ imes 10^{34}$		
ReLiC (Linear ERL Collider)	e+e-, \sqrt{s} = 0.24 TeV, L= 165 ×10 ³⁴		
ERLC (ERL Linear Collider)	e+e-, \sqrt{s} = 0.25 TeV, L= 90 ×10 ³⁴		
XCC FEL-based $\gamma\gamma$ collider	ee ($\gamma\gamma$), \sqrt{s} = 0.125 TeV, L= 0.1 ×10 ³⁴		
MC (Higgs factory)	$\mu\mu$, $\sqrt{s} = 0.13$ TeV, L= 0.01 $\times 10^{34}$		

Thomas Roser – EF Workshop

Two particle physics Nobel prizes awarded in last 10 years!

- François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" (2013)
- <u>Takaaki Kajita</u> and <u>Arthur B. McDonald</u> "for the discovery of neutrino oscillations, which shows that neutrinos have mass" (2015)

Neutrino mixing is new physics

- Solar v proved mixing → mass
 Why so light? Seesaw?
- Accelerator expts, T2K/NOvA and K2K/MINOS, (with reactors) have mapped the PMNS matrix
- More mysteries
 - Hyperfine-like mass splitting inverted or normal?
 - θ_{23} maximal?
- And the big question...

Will CP violation in the σ sector provide a clue to the missing antimatter in the universe?

Next-generation long baseline experiments

Ryan Patterson – Snowmass Neutrino Colloquium

- HyperK and DUNE/LBNF driving upgrades at J-PARC and FNAL
- HyperK water mass and
 DUNE liquid Ar precision
 very complementary
- Together, taking v oscillations into a new era of precision
- Strong possibility of discovering CP violation

MiniBooNE Detector

Signal Region

Veto Region

Other

Dirt

 $\Delta \rightarrow N\gamma$

 π^0 misid

v. from K⁰

v, from K+/

ν_e from μ^{+/-}

Best-fit

Data

•

LSND/MiniBooNE Anomalies

excess $\overline{v_e}$ in a $\overline{v_u}$ dominated beam, 3.8 σ

- LSND and MiniBooNE(MB) observed an excess of v_e -like events in a v_u beam
- Led to the sterile vhypothesis
 - v_{μ} disappearance at long baseline expts ruled out simple oscillation models

New results from MicroBooNE

- Built just upstream of MB
 - Pioneered larger LAr TPC and reconstruction
 - Check for low E excess with ability to separate e/γ
- Ruled out $\Delta \rightarrow N\gamma$ at 94% CL
- Ruled out e from v_e at 90% CL
- Question still remains... what is the source of the excess?

Could dark matter be the answer?

Category	Model	Signature	Anomalies	
Category	Woder	Jighature	LSND	MiniBooNE
Dark Sector:	transition magnetic mom., heavy ν decay	$N o \nu \gamma$	×	~
Decays in Flight	dark sector heavy neutrino decay	$N \to \nu(X \to e^+e^-) \text{ or }$ $N \to \nu(X \to \gamma\gamma)$	×	~
Dark Sector: Neutrino	neutrino-induced up-scattering	$ \begin{array}{c} \nu A \rightarrow \nu A, \\ N \rightarrow \nu e^+ e^- \text{ or } \\ N \rightarrow \nu \gamma \gamma \end{array} $	1	1
Scattering	neutrino dipole up-scattering	$\nu A \to N A, \\ N \to \nu \gamma$	1	~
Dark Sector:	dark particle-induced up-scattering	γ or e^+e^-	×	~
Dark Matter Scattering	dark particle-induced inverse Primakoff	γ	1	~

Georgia Karagiorgi – Snowmass Neutrino Colloquium

MB excess likely single γ

•

- Misestimated NC π^0 ?
- Many dark sector models can generate γ in MB
 - Some contribute to LSND

Looking forward to more experimental data

- More analyses from MicroBooNE in progress
- New short-baseline neutrino program just getting started
 - Adding a LAr near detector (SBND) and larger far detector (ICARUS)

Accelerators are playing an increasingly larger role in DM searches

- Many past parasitic collider and beam dump style experiments
- New generation of proposals tailored to DM portal searches
 - DM rescattering or decay
 - Millicharged
 - Missing momentum

DarkQuest at FNAL

St-3 tracking

e+(h+)

e-(h-)

15

St-4 muon ID

International effort with many current experiments and future proposals

Direct tests of muon-phillic scalar couplings to DM

https://www.osti.gov/servlets/purl/1659757

Muon g-2 discrepancy

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$
 $a_{\mu} = \frac{g-2}{2}$

- Muon g-2 at FNAL aims to measure the anomalous magnetic moment to 140 ppb (achieved 460 ppb Run 1)
- Sensitive to new particles and forces entering at the loop level
- Interpretation requires a robust SM calculation for comparison

Standard Model calculation of a_{μ}

•

Muon g-2 Theory Initiative arXiv:2006.04822

- QED and EW are extremely well known
- Hadronic terms are more difficult due to non-perturbative nature of QCD
 - HVP can be determined from e⁺e⁻ → hadrons data

Worldwide effort from colliders for $e+e- \rightarrow$ hadronic final states

e⁺e⁻ facilities involved in HVP measurement

- Upgraded machine and
 detectors at Novosibirsk to
 adding more data up to sqrt(s)
 < 2 GeV, 2π final state
 particularly important
- B factories providing data on higher multiplicity states

The FNAL experiment published it's first result last year!

- Good agreement with BNL
- Raises tension with SM to 4.2σ

The FNAL experiment published it's first result last year!

Experimental outlook for Muon g-2

- Run 1 result ~1.2 x BNL
- Aiming for a Run 2/3 publication by spring reducing error by ~2
- Run 5 wrapping up and approaching 20x BNL goal
- Experiment switching to μnext year

Muon g-2 at J-PARC

- Complimentary technique
 - $-\mu$ beam accelerated from rest
 - no E fields
 - smaller magnet
- Aiming for a result comparable to current results towards the end of the decade

Lattice calculation for Muon g-2 making rapid progress on HVP

- First result with e+e- competitive error bars came from a hybrid approach (RB/UKQCD)
- Pure lattice calculations trend towards larger quark contributions to a_{μ} (blue band)
 - Updated BMW20 in $\sim 2\sigma$ tension with e+e-
- Increasing quarks moves tension in SM fits

Are we seeing the hints for violation of Lepton Flavor Universality

Mounting Evidence for the Violation of Lepton Flavor Universality <u>https://arxiv.org/pdf/2111.12739.pdf</u> (A. Crivellin, M. Hoferichter)

- Many measurements with muons in the final state are starting to show tension with SM predictions
 - B factory anomalies R(D), R(D*), R(K), R(K*) are becoming particularly strong
 - Many of these have avenues for continued improvement
- New efforts to test lepton universality being proposed

The PIONEER Experiment

- Primary goal is to improve $R_{e/\mu}$, the charged pion branching ratio to electrons vs muons, by an order of magnitude
 - $R_{e/\mu}$ thy uncertainty ~15x smaller than current exp (PIENU)
- Secondary goal to study pion beta decay $\pi^+ \rightarrow \pi^0 e^+ \nu(\gamma)$ and improve V_{ud} by an order of magnitude for
 - theoretically clean CKM unitarity test
- Recently rate a high priority by the PSI PAC

PIONEER PSI Proposal (arXiv:2203.01981) PIONEER Snowmass (arXiv:2203.05505)

Searches for Charged Lepton Flavor Violation (CLFV)

Conclusion

- Accelerators have played a major role in discovering recent new physics
- Many anomalies abound some will fade but some might just prove to be new cracks in the Standard Model
- International roadmap of acceleratorbased experiments paving the way to discovery short and long-term
- Looking forward to a very colorful future!!!

Catuchak Weekend Market

