

DEVELOPMENT OF A QUANTUM ELECTRON BEAM DIAGNOSTIC APPARATUS

S. Zhang – Jefferson Lab

On Behalf Of QET Team:

- A. Camsonne, G. Park Jefferson Lab
- T. Averett William & Mary, Exp. Nuclear Physics
- S. Aubin, E. Mikhailov, I. Novikova, S. Pegahan William & Mary, Exp. AMO, Q/S
- N. DeStefano William & Mary graduate student
- S. Malinovskaya, A. Ramaswamy– Stevens Institute of Technology

Outlines

- Motivation
- Principles & Experimental Setup
- Results and Analysis
- Summary & Future Perspectives

Various Electron Beam Profile Diagnostics

 Phosphor screen, OTR, Wire scanner, EO sampling, Laser scattering,

Tomography, profile reconstruction,......

Is there a non-invasive beam apparatus measuring both longitudinal and transverse spatial profiles?

- Refs:
 - GJBHM (Courtesy A. Jeff)
 - H. Zhang, MONPOPT045

Potential Application - Charged Particles Tracking for NP

- Wire Chamber,
- Bubble Chamber,
- Hodoscope scintillator,
- Gem Chamber, ...
- Each one has limitations
- Common Features:

Sophisticated, Gigantic

Expensive, Time consuming

- Any improvement in rate capability, cost or size of the tracking device may greatly benefit current and future physics experiments.
- Quantum Tracker maybe a glimpse of hope?

Wire Chamber

- Ionization of gas collected on nearby wires, High-rate capability
- Multiple planes for 3-D track, High density electronic readout

Quantum Idea for Charged Particle Monitoring/Tracking

Charged particles produce electric/magnetic fields

The energy levels of Rb atoms are shifted, changing the atomic quantum state

Particle track is recreated by detecting the altered optical properties of atoms via optical device

Quantum Enhanced Tracker (QET)

Use phase sensitive superposition of atomic levels to greatly increase optical sensitivity to energy shifts.

- Sensitive only to charged particles
- High Resolution, High Speed
- 3D tracking in single volume

- Small number of channels, high rate capability
- Modern 3D "bubble chamber"

An approach yet to be demonstrated!

Experimental Setup

Longitudinal Detection

Longitudinal Detection

Transverse Detection

x (mm)

Another Approach - Detection with Rydberg Atoms

Rydberg EIT for e-Beam Sensor

Beam Imaging by EIT

Monitoring e-Beam Profile

E-beam setup/focus 1

FWHM ~ 1 mm

E-beam setup/focus 2

FWHM ~ 1.4 mm

Extract e-beam width through DC Stark shift

Imaging electron beam

Jefferson Lab

Semi-classical Theory Study

Demonstration of the effect of relativistic charged particles on EIT measurements

- AC Stark shifts due to fields from relativistic charged particles calculated using semiclassical formalism with the minimal coupling Schrodinger equation.
- Effects of interest include phase shift to EIT wavefunction and the scattering spectrum including coherent and incoherent fluorescent effects.

The EIT steady state fluorescence spectrum from a driven single atom is proportional to the spectral transform of the two-time correlation function for the atomic dipole operator $g_{\lambda}^{(1)}(\vec{r}',t';\vec{r},t) = \left\langle \left(\sum_{i} \sigma_{i}^{\dagger} \left(\vec{r}',t' - \frac{|\vec{r}'-\vec{r}_{a}|}{r}\right)\right) \left(\sum_{i} \sigma_{i} \left(\vec{r},t - \frac{|\vec{r}-\vec{r}_{a}|}{r}\right)\right) \right\rangle$.

External perturbations will introduce Stark shifts and change the spectrum for the duration where the perturbation is active. A short-term Fourier transform of $g_3^{(1)}(\vec{r}',t';\vec{r},t)$ is used to evaluate the perturbed spectrum

Lowest order perturbations for the energy of the n=50 Rydberg P1/2 state from S-state virtual transitions due to Coulomb field of relativistic charged particle with $\beta=0.999$ at 1 μ m distance perpendicular to motional axis. No dipole approximation and inhomogeneity of field is considered.

 $\Omega_P = 0.1 \text{ MHz}, \Omega_S = 10 \text{ MHz}, \Delta_1 = \Delta_2 = 0.$ Introduced gaussian DC Pulse with duration $\tau = 10 \text{ fs}$ causing effective AC Stark shift 20.0 MHz for the Rydberg level, 100 kHz for other levels, .

Summary & Future Perspectives

Studied e-beam detection by two approaches

- *NL magneto-optical rotation* to measure magnetic fields

 Beam sensed in both longitudinal and transverse configurations

 Beam image captured on camera via polarization rotation

 Minimum detection of $1~\mu A$ particle beam
- Rydberg atoms attempted for high sensitivity detection, under further study

Theoretical demonstration of the effect of relativistic charged particles on EIT measurements

In Future:

- Study across wider energies range, including relativistic electron source
- Demonstrate 3D-imaging capability
- Improve/Optimize system/explore beam halo & Single-particle detection

Acknowledgement: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. This project is supported by JLAB LDRD program and College of W&M.

