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Abstract

The radiation field of a particle which suddenly appears
in an ideal waveguide and moves on a helical trajectory
under the influence of external magnetic fields is
calculated. The shape and character of the front of the
propagating wave is determined.

INTRODUCTION

A combination of a waveguide and a helical undulator
transforms the helical undulator radiation spectrum from
continuous to discrete and thus improves the characteristics
of its radiation significantly [1]. Usually, the stationary
motion of a particle in an infinite rectangular [2-4] or
circular [1, 5-9] waveguide is considered, which ignores
the injection phenomenon, i.e. the instantaneous
appearance of a particle at a certain point in the waveguide
(some aspects of this problem are considered in [10-11]).
In the present work, the problem of the stationary motion
of a point particle with a charge varying with time and
performing a helical motion in an infinite ideal cylindrical
waveguide is considered. On this basis, the problem of a
particle that suddenly appears at a certain moment of time
and moves along a helical trajectory in the same waveguide
is solved. In conclusion, a formula is derived that describes
the gradual appearance of a bunch of charged particles,
which simulates the process of its injection.

CHARGE VARYING IN TIME

Consider a relativistic point charge with longitudinal
velocity V and charge Q(t), with an arbitrary time
dependence, moving in a homogeneous waveguide along a
helical trajectory, with a revolution frequency w;. The
waveguide is assumed to be circular with a radius b and has
perfectly conducting walls. The charge density p and
current J are given in the forms:

§(r—a)
p(‘f", P, 2, t) = CIQ(t) W

J0,2,0) = (0,08, +VE)p(r,.2t) (1)

5(p — wpt)8(z — V)

where €, €, are unit vectors in cylindrical coordinates and

a is the radius of the particle orbit. ¢ is the elementary
charge. The radiation field is determined from the wave
equations:
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with the magnetic permeability of vacuum p.

In the time-frequency domain the electrical and
magnetic fields are sought in the form of cylindrical mode
compositions, which combine TM and TE harmonics:

E = Yom=i{Emm + Enm} 3)

The longitudinal and transverse components of electric
and magnetic harmonics are written in the form of
expansion terms in Bessel functions of the first kind:

Er{%z = Upm¥m,
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where j,,,, and v, are the roots of the Bessel function and
its derivative, respectively. The result of substituting (4)
into (2) are second-order differential equations for the
time-dependent amplitudes U, 4, B, W, C and D:

f(gX)Xnm + bz(zijrrlm - X;llm)
= Fx(foQ(t) + RXQ,(t));

X=U A B W,C D (5)
with
f(gx) = c*(g% + b*k?) — b*w? = b*(@f — w?),
@y = T GI/BTTRZ, ©6)

9x = jnm for TM modes and gy = v,,,, for TE modes.

MCS: Beam Dynamics and EM Fields

2154 D04: Beam Coupling Impedance - Theory, Simulations, Measurements, Code Developments



13th Int. Particle Acc. Conf.

ISBN: 978-3-95450-227-1 ISSN: 2673-5490

Further in (5):
Fy = —quo i]—n (jm.n %):
2m? ]r21+1 (]nm)
Fr = —jato g L /)
21 j2 )i 41 Unm)
Fy = —qus bac*w, Vpm  Jn(Vama/b)
2n? Vim —1n% JE(Vam)
Ky =c*k—Vo, Ry=V
K, = c?j%, — b*nw,w, R, = b?*nw,
K = w, Rp =-1
P, = 2acw,  Vinm  JhVam a/b),
bey Vim —1n*  J3(Vam)
K, =1, Ry =0,
Fo = jq zj%mv - bzknwb]n(jnm a/b)
g Jar1Unm) JRm '
Ke =1, R. =0,
F, = —g 2abckwy,  Vam T (Vpm a/b)
g Vimn—1n% JE(vm)
K, =1, Rp=0 %)

Equation (5) is a second order differential equation. Its
complete solution can be composed of a particular solution
of an inhomogeneous equation and a general solution of a
homogeneous equation (with zero right-hand side). The
solution of the inhomogeneous equation (5) can be
obtained by representing the amplitudes X,,,,, and function
O(t) through the images X,,,, and Q,,, of the Laplace
transform in time:

Xpm = fooo)?nme‘“tda, Q) = fooo Qe *da (8)
After substitution one obtains:

Xnm(a) = FXQ(“)PX((X)’

Py(@) = jKx — aRyx/f(gx) — b*Qjwa + a?) 9

The time dependence of the amplitude is determined
using the inverse Laplace transform from the coordinate o
to the time domain. For all six components, the solution
has an identical form:

X(t) = Fe L7 YO ()P (@)}, X =U, A, B, W, C, D (10)

An explicit solution can be obtained from (10) by
substitution of the Laplace image Q(a) by a specific
function Q(t) of the time dependent function of a charge
variation.

RADIATION OF INSERTED PARTICLE

Now consider the process of injection of a single point
particle emerging at the time instant t = 0 at the point r =
a,z = 0, ¢ = 0 inside the waveguide and being drawn into
motion along a helical trajectory by external magnetic
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fields. The phenomenon of the instantaneous appearance of
a charged point particle is described by the introduction of
a step function into the expressions (1) for the charges and
currents instead of a function Q(t): Q(t) = x(t), where
x@®)=0att<0and y(t) =1 at t > 0. The Laplace
image of a step function is:

¥(@) = L{x(®)} = a (11

and the derivative of the step function at t > 0 is zero, just
as Ry = 0 in (9). Therefore, from (10) we have:

. FyKy

= aw (12)

Xn(t)

{1 — e Jot <cos(c’6,\,t) +j;—Nsin(5Nt)>}

The first term in (12) coincides with the expression for
the stationary solution in an infinite waveguide.
The factor uqg = b?/f(gy) can be represented as a sum

of two terms:
1 1

= — . 1
%0 = Gk (k) (a—kp) (k) (13)
On the other hand, uy = u; + u, with
w = k _ k

17 kalka—ko)(k=k1)  kalkai—kp)(k—k7)
1 1 1

= - = 14
Y2 T k) koK) Kk (14)
where

bVnwotc [b2n2w3—g%(c2-v?2)
ki, = (15)

b(c2-Vv?2)

are the roots of equation f(gy) = 0 with respect to k.
Now (12) can be rewritten as:

Xy (1) = jEyKyuo — e 7 Z(k)uy

—eIOtZ(Kuy + e 19 Z, (k) (16)
with
Z(k) = jEyKy {cos(aNt) + jaiNsin(mNt)}
and
Zo(k) = Ag(k) cos(@yt) + By(k) sin(@yt) (17)

where (17) is a general solution of the homogeneous
equation for the amplitudes (with zero right-hand side),
which is given by

Gx = f(gx)Xnm + b*(2jwXpm — Xiim) = 0 (18)

with the so far undefined coefficients A, (k) and By (k).
The transition to the space-time domain is accomplished
using the inverse Fourier transform versus k:
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O =XxP®O+xPO+xPO+xPw® (19
X = jBy [7 Kyuoe/ @ ) dk,
xP® =7 Z(kyu e dk
xP @) = [7 Z(k)uye " dk,
XD = 7, Zo(k)e = dk (20)
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The integrand of X IE,O) (t) is an analytic function on the
entire complex plane k and, with the exception of the
points k = k; and k = k,, corresponding to two simple
poles lying on the real axis. Its value (in the sense of the
principal value) is determined by the residues of these
poles in the usual way [5]. The integrand of X IE,I) (t) has the
same poles, but it is not an analytic function. The result of
the integration along the edges of the cuts emanating from
the branch points k = +j gy /b should also be added to its
value as the contributions from the poles. Asymptotically
this contribution can be calculated by the saddle point or
stationary phase method [12]. It is easy to see, that the
contribution from the poles to the integral X g,l)(t)
completely compensates the integral X, ,E,O) (t), and that the

additional contribution of the integral X ,E,l)(t) (calculated,
for example, by the stationary phase method), are
compensated by the appropriate selection of the amplitudes
Ay(k) and By (k) in the integral X 15,3)(t). Only the third
term X IE,Z) (t) in (20) remains nonzero. It does not contain
poles, but its integrand is not an analytic function either.
This integral

(2)(1:) = ]FU f Ky{cos(@yt) +

]a—sm(w,\,t)} e Jkzdk 1)
N
can be calculated explicitly. In particular, for the
longitudinal electric component E, we have:
F
E, = a5 metn (f1) e S, (22)
Here
S, t) = Al (fuw) = j[BJ,(fu) — Clo(fw)],
A= f—":)” Vet + c?y — 2V2%y),
2(c2-v2)(ve2+2yct+vy?)
B = 2 >
2cu
C = WA(Ev?)racinal)
- 2¢ ’
u=t?=yty=2z/c,f = jamc/b (23)

and J 1(x) (1 =0, 1, 2, n) are Bessel functions of the first
kind.
For the calculation the following relation [13] was used

msm[\/fZH] {]O[fwltz—y ] 0<y<b
N — cos(xy) dx = 0 b<y<m (24)

In contrast to the case of the homogeneous motion in an
infinite waveguide, the waveguide is filled with energy as
the particle travels into the waveguide in the case under
consideration here. The front of the propagated wave is
determined by the equality ct = z. Note that the field
component (22) tends to a finite limit at ct — z .

For the presence of radiation at a certain observation
point 7,¢,z inside the waveguide, the principle of
causality must be observed, which requires the following
relations to be satisfied:
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)
v + - =t, (25)
Here [; is the distance along the z axis, indicating the
position of the particle at a certain moment of time t’ < ¢,
where ¢ is the time at which its radiation reaches the point
of observation 1, ¢, z. [, denotes the distance between the
particle and the point of observation, a is the angle
between the line connecting the particle and the

observation point and the axis of the waveguide.
From (25) it follows:

L+1l,cosa=z

V(ctcosa—z)
ll =
c cosa-V

_ c(z-tV)
y =—

(26)

c cosa-V

In turn, from (26) it follows: If [, , > 0
i) the forward radiation is concentrated in the region
ct>z>tV,

i) the radiation is concentrated near the axis of the
waveguide within the conical angle

a < min{\2/(A = V2/c®) 1= (z/ct)?) 27)

The frequency characteristics of the radiation can be
determined by analysing the integrand in formula (21). For
an arbitrary value of the function f (j,,,), it is a rapidly
oscillating function, while with f(j,,) =0 the
oscillations remain only in the phase and its modulus
slowly varies with frequency. For this reason, its frequency
distribution is characterized by sharp peaks at frequencies
determined by equation f(jn,,) = 0. Thus, the resonant
frequencies remain the same as in the stationary motion of
a particle in an infinite waveguide [7].

The derived formula (23) describes a strongly directed
and narrow-band radiation.

The process of the emergence and subsequent
propagation of an arbitrary bunch of length t, can be
described by a convolution of the expression for the field
of a point particle (23) with the longitudinal distribution
function f,(t) in the bunch:

E2(6) = [[* f,(t — t)E,(t)dt’

Heret, = tfort <tyandt, = tyatt > t,.

For brevity, we derived an explicit expression only for
the longitudinal electrical component (23). The rest of the
components can be calculated similarly using equations (7).

CONCLUSION

The results of this work make it possible to study the
processes of emission of bunches in a helical undulator
combined with a waveguide in all details, as they occur
during injection, subsequent propagation, and after leaving
the open end of the waveguide. They will contribute to the
creation of mathematical models of the operation of an
undulator-waveguide structure close to reality.

The results related to the time-varying charge can also
find application in case of particle loss due to scattering on
the walls of the waveguide and scattering on molecules of
the residual gas.

(28)
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