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Abstract

The radiation field of a particle moving on a helical tra-
jectory in a cylindrical waveguide with resistive walls is
calculated. The deformation of the energy spectrum of ra-
diation as a result of the finite conductivity of the walls is
investigated.

INTRODUCTION

The helical motion of a charged particle considered in
this work simulates the operation of a helical undulator,
which is widely used as a source of circularly polarized
synchrotron radiation and FEL designs [1, 2]. Insertion of
the helically moving particle in a cylindrical waveguide
converts the radiation energy spectrum from continuous to
discrete [3]. With an appropriate selection of parameters, it
becomes possible to concentrate most of the radiation
power at one frequency and, thereby, create a source of
monochromatic radiation. In work [3], however, an ideal
waveguide was used as a model. For a more accurate de-
termination of the structure characteristics, it is necessary
to consider the finite conductivity of the waveguide walls.

Usually the problem has been solved numerically, using
simulation codes [1, 2, 4], or asymptotically [5-8]. An at-
tempt of an analytical solution was made in [9]. Here the
explicit expressions for the radiation fields are presented.

STATEMENT OF THE PROBLEM
Consider a relativistic point charge g with longitudinal
velocity V and revolution frequency w,, moving along the
helical trajectory in the resistive-wall cylindrical wave-
guide with inner radius b. The charge density p and current
J are given in the forms:
6(r—a)
Vra

j(r,9.2,8) = (0o0aé, +VE)p(r.9,2,1)

p(r,@,z,t) =q 5(p — wot)d(z — Vt)

(M

where €, €, are unit vectors in the cylindrical coordinates
1,9,z and a orbit radius. The electromagnetic properties
of a metal wall are determined by the dielectric &, = g5 +
Jj o/w and magnetic y; = pqy (&, and y, are dielectric and
magnetic permeability of vacuum) permeability of the wall
material.

The search of a solution is performed in the form of a
superposition of a particular solution E?, H? of the inho-
mogeneous Maxwell equations and the general solution

=3

EL HL of the homogeneous Maxwell equations in the form
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of multipole expansions of TM and TE components of a
point charged particle radiation fields:

E=Y2 {E}+E\}, H=37(H) + Hi}, 2)
E)=Ey™ +EY™, HY = HY™ + H)™®
EL=E™ +EY"™, H =H™ + H,"™® 3)

The solutions are based on the vector functions contain-

ing the Bessel J,, and Hankel H,Sl) functions of the first
kind:

€ = {(ar)"'ny(ar), ju(ar), 0}exp(jypn),
én = {(an) i (@), jH (@), 0fexp(y),
a; = Jw?euy — k?, inmetal

a= { 4)
ay, = w?/c? —k?, invacuum

In Eq. (4): « is the transverse wavenumber and ¢, =
k(z —vt) + n(p — wyt) is the phase factor with k =
(w — nwy)/V being the longitudinal wavenumber.

PARTICULAR SOLUTION

As a particular solution of the inhomogeneous Maxwell
equations, one takes the solution for the radiation of a par-
ticle moving along a helical trajectory in free space:

- 50,TM 0OTE 17 770,TM 770,TE
E=E"" +E,", H=H"" + H, (5)
with
050,TM 0,TM =g
FOTM _ Egn | _ (AHn 1otéy, T>a
n Tz =) 40TM
Elo'nTM Ay ot €, T < a’
170,TM 0,TM >
o™ _ Hyn' | _ (Bin em T>a
n T g =] poTM™
H]O'nTM B, "é, r<a
20,TE 0.TE 3
BOTE _ Eyn | _ {AH_n ey, T>a
n T )gorE( T OTE 3 >
En Ante, r<a
770,TE 0,TE
FOTE _ Hyn | (B rot 8y, r>a ©
n s - 0,TE
Hlo'nTE B, roté, r<a

Amplitudes AZ’(T]I;I‘ quE)' Bg’(ijv(lTE)

determine them, one should use the boundary conditions
that establish a connection between the fields on both sides
of the surface r = a containing charges p = q and currents

remain undefined. To
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7=q{0, wya, v}[10,11]. The conditions for the discon-
tinuity of fields on the surface r = a are reduced to two
systems of equations (for TM (7) and TE (8) modes):

) EO,TM -~ Ed,TM -0

2) EOTM +EM =0

3) Y T = g T

4) eo(Exy T _ E)T™) = qxapi™

5) HfIfM - H”M =0 (7
1) EOTE + EO,TE — 0

2) HSZE - H°TE = qxwitE,

3) H°TE+H°TE—q)(anZ

4) So(Eﬁ,fE EOT) = = qxnpit

5) Hy B —HE =0 (®)

In Eqs (7) and (8) the normalized components of cur-
rents ]nz, ]nz, Jug Gi™ +j7F =V) and charges pi™
TE (pI'M = 1), responsible for the formation of
TM and TE modes n'" harmonic, and weight factor y,, [11]
are introduced. Each of systems Egs. (7) and (8) contains
five equations and four amplitudes to be determined. The
components of the currents and charges are determined
from the compatibility conditions for all equations in-
cluded in systems Egs.(7) and (8): jIf = knw,/a3,
Jof = woa, pif = nwow/c*af. Below are the final ex-
pressions for the amplitudes:

AN = ~ja B Vo = RH (a0a),
A" = —ja 52 (Vo — k)] (@0a)
BOTM _ _jSOwA;)l’l]wM, BOTM _]gowAOTM
A = jq %%Hﬁ” (@00,
AVF = ja T R ) (aa)
BrOL}I'E —]AOTE/(J.)[.lO, OTE_ OTE/(UHO (9)

COMPLETE SOLUTION

The total radiation field of a particle in the inner region
of waveguide (0 < r < b) is presented in the form of the
sum of the general solution of Maxwell's equations with
indefinite weight amplitudes and the above determined
particular solution (radiation field of a particle in free space
(6, 9)) of the same equations:
Ein — FLTM | FLTE | FOTM | FOTE
Hin = g1T™™ 4 HATE | HOTM | HOTE (10)

Fields E®™, EOTE are determined by Eq. (6), ( 9), and
fields EY™, EVTE are sought in the form:

EL™ = ALTM ot é, Hv™ = gL é,

Brll JTIM __ ]Al TMgow

ELTE = AITE* HYTE = BYTEyot 8 é,

B, = JA”E/uow (11)

The field in the wall of the waveguide is represented as
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Eout EZTM +E2TE Hout HZTM +H2TE (12)
E2™ = p2™pot 8, H>™ = p2™g,

BTZL TM ]AZ TMgl(lJ,

E2TE = p27TF g, H2TE = B2TErot &,

BZTE ]AZTE/#lw (13)

The further is matching the tangential components of the
electric and magnetic fields Eqs. (10) and (12) on the
waveguide wall. This leads to a system of four linear equa-
tions for the amplitudes Ay"™, AT, AZ™ and A%"Fwith
solution:

A=A, +4,
2 1,T™M 1TE 2,TM 2,TE
A1.2 {A"u ’ "12’A"12 'A"12
1,TM
AX™ — jaZay. C
=Jq;aXn LJna e
1,TE _ CyaiagiHEJnw?
A, = qaynknp =—" "= =
2 27 2
2TM _ Cyapainlyw
An1 annb aoczD )

2 io2
2TE _ Cua1@p1 HnJn/nw
AZT = qagylenp; Sl
1TM JhHEknwwg
A g = — a a a e —

q 1@01Xn = SOD >
1,TE

AyyF = —jq xnka® wwoll = e

2,TM __ IanJn
An = —qa Xnknwwoaoa1ao1 >

c2goD

2TE 2 ]n1£

AZTF = quy b0 woadad JE5 (14)

In Eq. (14) the following notations are mtroduced:
= Jn(aob), Hy = H" (a1b), C, = Vo — c?k
Jn = Jn(@oa), By = HyP (aoh), aor = af — af

2‘} al]n n { } + aO]nHrll {/J }

g} = —aa i, (2} + @l 1)

W, - Y.l
mi’:} = k?n2ad,H2J,H, — b*ada? {YE;‘}wZ
D = k*n*a§,H}]y — b*agaill,w? (15)

The roots of dispersion equation D =0 Eq. (15)
determines the discrete eigenfrequencies where the real
components are the resonant frequencies, and imaginary
ones are the modes attenuation coefficients. In the limit of
an ideal waveguide (g; = o) the nonzero in Eq. (14) re-
main the amplitudes A#ITM and A;ZT E_ correspond to the
fields propagating inside the Waveguide

, cut (Y (@ob) Jn(@oa)
Al ,TM — T axnCyH, n :
]q aofz«‘—;oln(aob)
2 (1) ’
1TE _ _; T a®xnHy ~ (agb)Jn(aoa)
An,” = A5 000 G D) (16)

The complete solution for an ideal waveguide is the sum
of the general solution Eq. (11) and (16) and the particular
solution Egs. (6) and (9). For comparison with existing so-
lutions for an ideal waveguide [3, 12, 13], the obtained lim-
iting solution was expanded in terms of the eigenfunctions
of an ideal waveguide. The presence of an additional pole
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at @y = 0 in the obtained solution is detected. To eliminate
its contribution, the function y,, is given the form

Y = a1 {1 _ 4nl—~2(n)nln(aob)]n(aob)},

(aob)2n1
'n) =(m-1), (17)
which does not distort the contributions of the poles at
C(g = jims JnGnmb) =0 (TM modes) and (Xg = Vim,
Jn(Vamb) = 0 (TE modes). Passing to the space-time rep-
resentation (integration over frequency in the sense of the
principal value) in both cases gives the same result.
The radiation energy of the multipole, accumulated in
the waveguide is determined by the formula (cross terms
are neglected due their small contribution):

& =2m [ Wy(w)dw, (18)
Waw) = 2 [ {eo|[ BV + BVE| 4 g | VM + FVTE Y, (19)

z-Vit<0

z-Vit>0
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f = w/27 [THZ]
Figure 1: Spectral distribution of dipole mode (n = 1) ra-
diation in a copper waveguide; forward (right) and back
(left) radiation.

where W, (w) is a spectral energy density. The relationships
between the undulator parameter K, the undulator period
1, and the Lorentz factor y of a particle with an orbit radius
a = ,K/2ny, longitudinal velocity V = c¢{1 — (1 + K?)/2my?},
and rotation frequency w, = 2rV /1, are used. In the calcula-
tions (Fig. 1-3), the following parameter values were used:
b=1cm,K =042, I, =8cm,y = 2935, =10pC and o =758-
10°Q7*m~! (copper). Figure 1 shows the spectral distribu-
tion of the dipole mode (n = 1), calculated by these param-
eters, providing terahertz radiation both for ahead of the
particle (z—Vt > 0) and in the opposite direction (z —Vt <
0). The peaks above the level 1nJ-sec constitutes the TE
modes. Another row with peaks less than 1 nJ - sec corre-
sponds to TM modes. As in an ideal waveguide, the TE
modes prevail. Figure 2 compares the spectra of resonant
frequencies for an ideal and copper waveguide, presented
in the space-time domain. The fields in this representation,
as in [3], are obtained by integrating the spectral distribu-
tion of the field components Eqs. (11) and (14) over fre-
quency using the contributions from residues (at D = 0) on
the complex plane. The frequency overlapping and profile
repetition at a somewhat low level (due to finite conductiv-
ity) takes place. In both cases, the TE; ; mode accumulates
most of the energy.
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Figure 2: Spectral distribution (space-time domain, for-
ward direction, z—Vt — 0) of first three multipoles
(n = 1,2,3) stored radiation energy for TE (top) and TM
(bottom) modes in a copper (red, dashed) and ideal (black,
solid) waveguides.
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Figure 3: Damping factors of TE (blue) and TM (red)
modes at resonant frequencies forn = 1.

For a resistive waveguide, an important parameter is the
mode damping factor g,; = Im{w,;}/V, where w,; are the
roots of the equation D = 0. As can be seen from Fig. 3, TM
modes have significantly higher attenuation than TE
modes. The backward radiation is attenuated more weakly.
Mode TE, c has the minimum attenuation in the forward di-
rection.

CONCLUSION

The obtained exact solution, in contrast to the case of an
ideal waveguide, has no singularities at the critical (TE
modes, space-time domain) and resonant (TE and TM
modes, frequency domain) frequencies. Along with the
greater prevalence of TE modes (due to higher attenuation
of TM modes) than in an ideal waveguide, the maximum
value of the amplitude of the dominant TE mode is limited
due to the finite conductivity of the walls.

The solution presents a realistic picture of radiation and
creates wide opportunities for research on optimizing the
parameters of the structure, depending on its purpose.

The solution can be extended to two-layer (by the
method described in [9]) and multilayer (by analogy with
[14]) waveguides
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