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Abstract

Beam-beam interactions are a limiting factor in the
planned high luminosity (HL) upgrade to the Large Hadron
Collider (HL-LHC). Over the two main interaction regions
of the LHC, a particle experiences two head-on and many
long-range beam-beam interactions which drive betatron res-
onances in the system. Each resonance line in the space of
horizontal and vertical tunes has a finite (non-zero) lock-on
width. If particles’ tunes fall within this width, they will
eventually lock on to the resonance and be driven to large am-
plitude. We show that it is possible to reduce the resonance
widths of a given order by using specific values of the phase
advance between interaction points. This paper presents
the derivation of resonance width for the weak-strong beam-
beam effect, as an extension of A. Chao’s width formulae for
magnetic sextupoles. (A Lie-algebraic approach is used to
combine the effect of the individual beam-beam impulses.)
The paper then studies the lock-on width arising from two
interaction regions containing 70 beam-beam impulses, and
shows the cancellation of specific resonances by relative
phasing of interaction points in the HL-LHC lattice.

INTRODUCTION

Beam-beam interactions drive betatron resonances and
are a limiting factor for the HL-LHC. These resonances can
occur when the vertical and horizontal betatron tunes are
related by an integer equation. This is represented by straight
lines (Fig. 1)in tune space:

mvy+nvy =q (1)
mply +npy =2nq , (2
where m, n, and g are integers, and v, u are tune and phase
advances. Depending on the properties of the interaction(s)
driving resonances, some of these lines can represent dan-
gerous resonances with large lock-on widths. However, not
all such lines represent an active resonance of the system
and not all resonances are dangerous.

The model used in this paper is a 70 impulse Lie alge-
braic weak-strong model. The impulses are spread over two
interaction regions (IR1 and IRS), including both head-on
and long-range interactions. The separations and phasing
for each bunch was calculated with MadX using the sug-
gested HL-LHC lattice. The details can be found in Ref. [1].
The resonances of this model are analysed using a lock-on
width formula. It is shown resonances of any order can be
weakened or removed entirely by the relative phasing of
interaction points.

WEPOMS019
2280

Ord.5to 16
0.320
0.315 %
0.310 %
0.305 %
£ 0.300
0.295
0.290
0.285 %z;& ;% §
0‘280{}.28 0.29 0.30 0.31 0.32

Figure 1: Potential resonance lines of order 5 to 16 near
suggested working point (0.31,0.32)

RESONANCE WIDTH

The lock-on width of a one dimensional resonance
line (Fig. 2) is defined as the range of tune oscillation ampli-
tude (of a particle close to resonance) within which a particle
will eventually lock-on to the precise resonance condition. A
particle whose tune is inside the lock-on width will eventu-
ally land exactly on the resonant tune. The particle’s motion
then becomes co-periodic with the driving interaction; this
allows the effects of the driving perturbation to accumulate.
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Figure 2: 1D Resonance width in tune space (Qy = vy),
(Fig. 5 in Ref. [3])
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Figure 3: Resonance width in tune space (Fig. 9.7 in Ref. [2])

In two dimensionsline (Fig. 3), one can define an analo-
gous resonance width as Chao did [2]. Repeating his pro-
cedure but with beam-beam interactions in mind, consider
a one turn map with beam-beam perturbations e~ //* =
e H2e=Hpb:  We find the effective Hamiltonian to first
order can be written as:

Hep = —pxAx — ﬂyAy + [Z i

j n,m=—c

(mpx +n/1y)
+nt2 >)

2 sin (m

(]) lm( +oxtApY)) m( +¢y+A¢(J))]

, 3)
¢} are the Fourier coefficients of the j'" beam-beam im-
pulse Hamiltonian, which can be computed using the method
in Ref. [4]. Aqb)(cj ) and Aqby ) are the horizontal and vertical
phases of the j*” beam-beam impulse.

Letmyy +nuy, = 2mq be aresonance. Consider a system
near resonance at frequencies u, and u, such that mu, +
npy, = 2nq + € for some small e. We move to a co-rotating
coordinate system,

X [em

¢ = Px +kpr,, ¢; =¢y+ kﬂry “4)
where k indexes turn number. In normal form (see Sec-
tion 9.8 in Ref. [2]) near resonance, one can write ¢'ob:
as e’fo*Hr: - Hi is the non-oscillatory part, and H, is the
resonant part. In this coordinate system, in normal form ,
the effective Hamiltonian takes the form of

H' = Hr)Ax + (Hy

() L€
Cmn

=(px
"2

~(px = pr ) Ax + (py - ,ury)Ay +Hy
+ Z (J) lm¢x+A¢m in¢/y+A¢§”

J

= Hr,)Ay + Hy
tm¢;+A¢§(j)ein¢;+A¢y)

&)

for small €.
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Hamilton’s equations can be used to find the change in
phase of the reference particle with respect to turn number
k, which is the particle tune (in the co-rotating coordinates).

e, 9Ho 6cmn PIMtAGs Hindl+A¢
= — + — X X ¥,

dk P T HE T A 9A, “

d¢;; aH() 0C

Y _ +— 4 mn zm¢X+A¢x ing; +A¢y

dk T T AT Liaa, “

For a one dimensional resonance, the resonance width is
the oscillation amplitude of the tune. For a two dimensional
resonance (Fig. 4), we define the resonance width A as the

d¢.x
ak g dk =)

L
\A’Ve note that we have absorbed T into the definition of

oscillation amplitude of the quantity ‘/% (m
m-+n

A= Z 6c,(,{,)l nacf,{,), pimae Linag
Vm2+n dAy

(6)
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Figure 4: 70 impulse IR1-IR5 model width function A with
no phasing: order 6(red), 10(orange), 13(green), 16(blue).
Fig. 13 in Ref. [1].

RESONANCE WIDTH REDUCTION BY
INTERACTION POINT PHASING

Atresonance, the effective Hamiltonian (3) is singular; the
sine term in the denominator approaches zero as mu, +nj,
approaches 2mg for integers m, n and q. However, for such
integers, it is possible to choose values of A¢,, Ag, such
that the effective Hamiltonian is no longer singular. This
should in theory remove the resonant behaviour. This was
first seen in Ref. [5].

Consider the effective Hamiltonian (3) for a two beam-
beam impulse model. Let the first be located at phase (0, 0)
and the second one at (A¢,, A¢,). Since the beam-beam
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potential Hy, is a real function, its Fourier coefficients have
the following symmetries: ¢_,n = Cmn » Cm—n = Cmn-

Assuming that the two impulses are identical except for a
phase difference,

4cn

Her == ixAs = iyAy + ) St s
2 2

m,n=1
(cos [m('u?x +dx) + n(/%y +¢y)]

+eos (B 4 gy + A00)) + (5 + 8y +A6))1)

Using the sum of cosine identity, this can be rewritten as

S 4c
mn

Her = — ,uxAy - ﬂyAy + . omuy | Ny
4 sin (5= + 5%

m,n=1 2 2

Ag)x +¢x)+n(—+%+

2 2
A¢x A¢y

cos [m('ll?x+

X cos [m

Given the tunes, and for any m,n such that
sin (% + n%) = 0, it suffices to find A¢,, A¢,, such that

cos (mAf" + HA%) = 0. Therefore, if mu, + nu, = 2ng

is a resonance, then choosing A¢,,A¢, such that
mA¢y +nlA¢, = np will cancel it for odd p.

For a resonance line of order m + n = k, a phase shift
between IP of A, = ¥ = A¢, satisfies the resonance
canceling condition.

In our model with 70 impulses in two interaction regions,
each impulse in the first region must be phased appropri-
ately with an impulse in the second region. Furthermore, the
Fourier coefficients of these pairs are sufficiently symmetric.
The 16th order resonances lie close to the suggested work-
ing point of (0.31,0.32). The width of these resonances
can be reduced by applying an additional phase shift of
27 % (=0.17535) in A¢ and 27 X (—0.33835) in A¢,, to the
standard HL-LHC bunch phasing, bringing the the phase
advance from IP to IP to 2nm + {¢. See Fig. 16 in Ref. [1].

For 10th order resonances, one finds that a phase advance
of 7 offers cancellation. This phasing needs not be ex-
act (Fig. 5). One finds that being within 27 x 1073 offers
reasonable resonance width reduction.

CONCLUSION

The resonances driven by beam-beam interactions are a
limiting factor for the High Luminosity LHC. By examining
the lock-on width of resonances, it is possible to identify
whether a suggested working point is in a dangerous region
in tune space. Furthermore, it is possible to reduce the width
of resonances of any order via an appropriate phasing.
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(a) Resonances order 5-16 at (32.25 + 10™#) x 27 phasing
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(b) Resonances order 5-16 at (32.25 + 1073) x 2 phasing
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(c) Resonances order 5-16 at (32.25 + 1072) x 27 phasing

Figure 5: 70 impulse IR1-IRS model 10th order (orange)
resonance cancellation by the phasing of 2 IRs: 6th or-
der(red), 10th order(orange), 13th order(green), 16th or-
der(blue). Fig. G25 in Ref. [1]
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