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Abstract
Beam-beam interactions are a limiting factor in the

planned high luminosity (HL) upgrade to the Large Hadron
Collider (HL-LHC). Over the two main interaction regions
of the LHC, a particle experiences two head-on and many
long-range beam-beam interactions which drive betatron res-
onances in the system. Each resonance line in the space of
horizontal and vertical tunes has a finite (non-zero) lock-on
width. If particles’ tunes fall within this width, they will
eventually lock on to the resonance and be driven to large am-
plitude. We show that it is possible to reduce the resonance
widths of a given order by using specific values of the phase
advance between interaction points. This paper presents
the derivation of resonance width for the weak-strong beam-
beam effect, as an extension of A. Chao’s width formulae for
magnetic sextupoles. (A Lie-algebraic approach is used to
combine the effect of the individual beam-beam impulses.)
The paper then studies the lock-on width arising from two
interaction regions containing 70 beam-beam impulses, and
shows the cancellation of specific resonances by relative
phasing of interaction points in the HL-LHC lattice.

INTRODUCTION
Beam-beam interactions drive betatron resonances and

are a limiting factor for the HL-LHC. These resonances can
occur when the vertical and horizontal betatron tunes are
related by an integer equation. This is represented by straight
lines (Fig. 1)in tune space:

𝑚𝜈𝑥 + 𝑛𝜈𝑦 = 𝑞 (1)
𝑚𝜇𝑥 + 𝑛𝜇𝑦 = 2𝜋𝑞 , (2)

where 𝑚, 𝑛, and 𝑞 are integers, and 𝜈, 𝜇 are tune and phase
advances. Depending on the properties of the interaction(s)
driving resonances, some of these lines can represent dan-
gerous resonances with large lock-on widths. However, not
all such lines represent an active resonance of the system
and not all resonances are dangerous.

The model used in this paper is a 70 impulse Lie alge-
braic weak-strong model. The impulses are spread over two
interaction regions (IR1 and IR5), including both head-on
and long-range interactions. The separations and phasing
for each bunch was calculated with MadX using the sug-
gested HL-LHC lattice. The details can be found in Ref. [1].
The resonances of this model are analysed using a lock-on
width formula. It is shown resonances of any order can be
weakened or removed entirely by the relative phasing of
interaction points.

Figure 1: Potential resonance lines of order 5 to 16 near
suggested working point (0.31,0.32)

RESONANCE WIDTH
The lock-on width of a one dimensional resonance

line (Fig. 2) is defined as the range of tune oscillation ampli-
tude (of a particle close to resonance) within which a particle
will eventually lock-on to the precise resonance condition. A
particle whose tune is inside the lock-on width will eventu-
ally land exactly on the resonant tune. The particle’s motion
then becomes co-periodic with the driving interaction; this
allows the effects of the driving perturbation to accumulate.

Figure 2: 1D Resonance width in tune space (𝑄𝐻 = 𝜈𝑥),
(Fig. 5 in Ref. [3])
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Figure 3: Resonance width in tune space (Fig. 9.7 in Ref. [2])

In two dimensionsline (Fig. 3), one can define an analo-
gous resonance width as Chao did [2]. Repeating his pro-
cedure but with beam-beam interactions in mind, consider
a one turn map with beam-beam perturbations 𝑒−:𝐻𝑒 𝑓 𝑓 : =
𝑒−:𝐻2:𝑒−:𝐻𝑏𝑏 :. We find the effective Hamiltonian to first
order can be written as:

𝐻eff = −𝜇𝑥𝐴𝑥 − 𝜇𝑦𝐴𝑦 + [
∑︁
𝑗

∞∑︁
𝑛,𝑚=−∞

(𝑚𝜇𝑥 + 𝑛𝜇𝑦)
2 sin (𝑚 𝜇𝑥

2 + 𝑛
𝜇𝑦

2 )
]

× [𝑐 ( 𝑗 )𝑚𝑛𝑒
𝑖𝑚( 𝜇𝑥2 +𝜙𝑥+Δ𝜙 ( 𝑗)

𝑥 )𝑒𝑖𝑛(
𝜇𝑦

2 +𝜙𝑦+Δ𝜙 ( 𝑗)
𝑦 ) ] .

(3)
𝑐
𝑗
𝑚𝑛 are the Fourier coefficients of the 𝑗 𝑡ℎ beam-beam im-

pulse Hamiltonian, which can be computed using the method
in Ref. [4]. Δ𝜙 ( 𝑗 )

𝑥 and Δ𝜙
( 𝑗 )
𝑦 are the horizontal and vertical

phases of the 𝑗 𝑡ℎ beam-beam impulse.
Let 𝑚𝜇𝑟𝑥 +𝑛𝜇𝑟𝑦 = 2𝜋𝑞 be a resonance. Consider a system

near resonance at frequencies 𝜇𝑥 and 𝜇𝑦 such that 𝑚𝜇𝑥 +
𝑛𝜇𝑦 = 2𝜋𝑞 + 𝜖 for some small 𝜖 . We move to a co-rotating
coordinate system,

𝜙′𝑥 = 𝜙𝑥 + 𝑘𝜇𝑟𝑥 , 𝜙′𝑦 = 𝜙𝑦 + 𝑘𝜇𝑟𝑦 (4)

where 𝑘 indexes turn number. In normal form (see Sec-
tion 9.8 in Ref. [2]) near resonance, one can write 𝑒:𝐻𝑏𝑏 :

as 𝑒:𝐻0+𝐻𝑟 :. 𝐻0 is the non-oscillatory part, and 𝐻𝑟 is the
resonant part. In this coordinate system, in normal form ,
the effective Hamiltonian takes the form of

𝐻′ =(𝜇𝑥 − 𝜇𝑟𝑥 )𝐴𝑥 + (𝜇𝑦 − 𝜇𝑟𝑦 )𝐴𝑦 + 𝐻0

+
∑︁
𝑗

𝑐
( 𝑗 )
𝑚𝑛

𝑖𝜖

1 − 𝑒−𝑖 𝜖
𝑒𝑖𝑚𝜙′

𝑥+Δ𝜙
( 𝑗)
𝑥 𝑒𝑖𝑛𝜙

′
𝑦+Δ𝜙

( 𝑗)
𝑦

≈(𝜇𝑥 − 𝜇𝑟𝑥 )𝐴𝑥 + (𝜇𝑦 − 𝜇𝑟𝑦 )𝐴𝑦 + 𝐻0

+
∑︁
𝑗

𝑐
( 𝑗 )
𝑚𝑛𝑒

𝑖𝑚𝜙′
𝑥+Δ𝜙

( 𝑗)
𝑥 𝑒𝑖𝑛𝜙

′
𝑦+Δ𝜙

( 𝑗)
𝑦

(5)

for small 𝜖 .

Hamilton’s equations can be used to find the change in
phase of the reference particle with respect to turn number
𝑘 , which is the particle tune (in the co-rotating coordinates).

𝑑𝜙′𝑥
𝑑𝑘

= 𝜇𝑥 − 𝜇𝑟𝑥 +
𝜕𝐻0
𝜕𝐴𝑥

+
∑︁
𝑗

𝜕𝑐
( 𝑗 )
𝑚𝑛

𝜕𝐴𝑥

𝑒𝑖𝑚𝜙′
𝑥+Δ𝜙𝑥 𝑒𝑖𝑛𝜙

′
𝑦+Δ𝜙𝑦 .

𝑑𝜙′𝑦

𝑑𝑘
= 𝜇𝑦 − 𝜇𝑟𝑦 +

𝜕𝐻0
𝜕𝐴𝑦

+
∑︁
𝑗

𝜕𝑐
( 𝑗 )
𝑚𝑛

𝜕𝐴𝑦

𝑒𝑖𝑚𝜙′
𝑥+Δ𝜙𝑥 𝑒𝑖𝑛𝜙

′
𝑦+Δ𝜙𝑦 .

For a one dimensional resonance, the resonance width is
the oscillation amplitude of the tune. For a two dimensional
resonance (Fig. 4), we define the resonance width Δ as the
oscillation amplitude of the quantity 1√

𝑚2+𝑛2 (𝑚
𝑑𝜙′

𝑥

𝑑𝑘
+𝑛 𝑑𝜙′

𝑦

𝑑𝑘
).

We note that we have absorbed 1√
𝑚2+𝑛2 into the definition of

Δ.

Δ =
∑︁
𝑗

1
√
𝑚2 + 𝑛2

(
𝑚
𝜕𝑐

( 𝑗 )
𝑚𝑛

𝜕𝐴𝑥

+ 𝑛
𝜕𝑐

( 𝑗 )
𝑚𝑛

𝜕𝐴𝑦

)
𝑒𝑖𝑚Δ𝜙

( 𝑗)
𝑥 𝑒𝑖𝑛Δ𝜙

( 𝑗)
𝑦 .

(6)

Figure 4: 70 impulse IR1-IR5 model width function Δ with
no phasing: order 6(red), 10(orange), 13(green), 16(blue).
Fig. 13 in Ref. [1].

RESONANCE WIDTH REDUCTION BY
INTERACTION POINT PHASING

At resonance, the effective Hamiltonian (3) is singular; the
sine term in the denominator approaches zero as 𝑚𝜇𝑥 + 𝑛𝜇𝑦

approaches 2𝜋𝑞 for integers 𝑚, 𝑛 and 𝑞. However, for such
integers, it is possible to choose values of Δ𝜙𝑥 ,Δ𝜙𝑦 such
that the effective Hamiltonian is no longer singular. This
should in theory remove the resonant behaviour. This was
first seen in Ref. [5].

Consider the effective Hamiltonian (3) for a two beam-
beam impulse model. Let the first be located at phase (0, 0)
and the second one at (Δ𝜙𝑥 ,Δ𝜙𝑦). Since the beam-beam
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potential 𝐻𝑏𝑏 is a real function, its Fourier coefficients have
the following symmetries: 𝑐−𝑚𝑛 = 𝑐𝑚𝑛 , 𝑐𝑚−𝑛 = 𝑐𝑚𝑛.

Assuming that the two impulses are identical except for a
phase difference,

𝐻eff = − 𝜇𝑥𝐴𝑥 − 𝜇𝑦𝐴𝑦 +
∞∑︁

𝑚,𝑛=1

4𝑐𝑚𝑛

2 sin (𝑚𝜇𝑥

2 + 𝑛𝜇𝑦

2 )(
cos [𝑚( 𝜇𝑥

2
+ 𝜙𝑥) + 𝑛(

𝜇𝑦

2
+ 𝜙𝑦)]

+ cos [𝑚( 𝜇𝑥

2
+ 𝜙𝑥 + Δ𝜙𝑥)) + 𝑛(

𝜇𝑦

2
+ 𝜙𝑦 + Δ𝜙𝑦)]

)
.

Using the sum of cosine identity, this can be rewritten as

𝐻eff = − 𝜇𝑥𝐴𝑦 − 𝜇𝑦𝐴𝑦 +
∞∑︁

𝑚,𝑛=1

4𝑐𝑚𝑛

sin (𝑚𝜇𝑥

2 + 𝑛𝜇𝑦

2 )(
cos [𝑚( 𝜇𝑥

2
+ Δ𝜙𝑥

2
+ 𝜙𝑥) + 𝑛(

𝜇𝑦

2
+
Δ𝜙𝑦

2
+ 𝜙𝑦)]

× cos [𝑚Δ𝜙𝑥

2
+ 𝑛

Δ𝜙𝑦

2
]
)
.

Given the tunes, and for any 𝑚, 𝑛 such that
sin (𝑚𝜇𝑥

2 + 𝑛𝜇𝑦

2 ) = 0, it suffices to find Δ𝜙𝑥 ,Δ𝜙𝑦 such that
cos (𝑚Δ𝜙𝑥

2 + 𝑛Δ𝜙𝑦

2 ) = 0. Therefore, if 𝑚𝜇𝑥 + 𝑛𝜇𝑦 = 2𝜋𝑞
is a resonance, then choosing Δ𝜙𝑥 ,Δ𝜙𝑦 such that
𝑚Δ𝜙𝑥 + 𝑛Δ𝜙𝑦 = 𝜋𝑝 will cancel it for odd 𝑝.

For a resonance line of order 𝑚 + 𝑛 = 𝑘 , a phase shift
between IP of Δ𝜙𝑥 = 𝜋

𝑘
= Δ𝜙𝑦 satisfies the resonance

canceling condition.
In our model with 70 impulses in two interaction regions,

each impulse in the first region must be phased appropri-
ately with an impulse in the second region. Furthermore, the
Fourier coefficients of these pairs are sufficiently symmetric.
The 16th order resonances lie close to the suggested work-
ing point of (0.31, 0.32). The width of these resonances
can be reduced by applying an additional phase shift of
2𝜋× (−0.17535) in Δ𝜙𝑥 and 2𝜋× (−0.33835) in Δ𝜙𝑦 to the
standard HL-LHC bunch phasing, bringing the the phase
advance from IP to IP to 2𝑛𝜋 + 𝜋

16 . See Fig. 16 in Ref. [1].
For 10th order resonances, one finds that a phase advance

of 𝜋
2 offers cancellation. This phasing needs not be ex-

act (Fig. 5). One finds that being within 2𝜋 × 10−3 offers
reasonable resonance width reduction.

CONCLUSION

The resonances driven by beam-beam interactions are a
limiting factor for the High Luminosity LHC. By examining
the lock-on width of resonances, it is possible to identify
whether a suggested working point is in a dangerous region
in tune space. Furthermore, it is possible to reduce the width
of resonances of any order via an appropriate phasing.

(a) Resonances order 5-16 at (32.25 + 10−4 ) × 2𝜋 phasing

(b) Resonances order 5-16 at (32.25 + 10−3 ) × 2𝜋 phasing

(c) Resonances order 5-16 at (32.25 + 10−2 ) × 2𝜋 phasing

Figure 5: 70 impulse IR1-IR5 model 10th order (orange)
resonance cancellation by the phasing of 2 IRs: 6th or-
der(red), 10th order(orange), 13th order(green), 16th or-
der(blue). Fig. G25 in Ref. [1]
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