
BADGER: THE MISSING OPTIMIZER IN ACR
∗

Z. Zhang†, A. Edelen, C. Mayes, J. Garrahan, J. Shtalenkova, R. Roussel, S. Miskovich, D. Ratner

SLAC National Accelerator Laboratory, 94025 Menlo Park, USA

M. Boese, S. Tomin

Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany

G. Wang, Y. Hidaka

Brookhaven National Laboratory, 11973 Upton, USA

Abstract

Online optimization is crucial during accelerator opera-

tions to achieve satisfying machine performance. Optimiza-

tion algorithms such as Nelder-Mead simplex, Gaussian

process (GP), and robust conjugate direction search (RCDS)

have been widely used in accelerator online optimization

scenarios. The usual way of doing online optimization in

accelerator control rooms (ACR) is to write a script that

connects the algorithm to the problem. This approach would

accrue code fragments that are difficult to maintain and reuse,

plus the optimization progress can not be easily monitored

and controlled. In this study, we propose an optimization

platform named Badger to tackle the obstacles in ACR on-

line optimizations. The design philosophies and features of

Badger would be introduced and discussed.

INTRODUCTION

Modern large-scale accelerator facilities become more

and more complicated, in consequence, the performance of

the accelerators in operation usually differs from the design.

Online optimization during operation is the key to bridging

the gap between the designed properties and the ones in ac-

tion, to achieve satisfying machine performance [1–7]. One

obstacle to applying various algorithms in machine tuning

tasks is that different algorithms usually work in different

ways, the users have to write wrapper code to adapt the al-

gorithms to their cases. This approach is not ideal since the

number of the wrapper scripts would increase with time, and

consequently makes it hard to manage and reuse these ma-

chine tuning-related scripts. Another drawback of creating

a wrapper script for every new machine tuning task is code

redundancy. For example, a large chunk of similar optimiza-

tion progress visualization code needs to be written again

and again – it is essential to see the optimization progress on

the fly, although the visualization code itself is trivial and

distracting.

The issues described above can be solved by employing

an optimization framework that has a wide range of built-in

algorithms, provides a straightforward way to create a cus-

tom optimization problem, and can monitor the optimization

progress in some way. Xopt [8], Ocelot optimizer [9], and

Teeport [10] are good candidates of optimizers that can be

∗ This work was supported by the U.S. Department of Energy, under DOE

Contract No. DE-AC02-76SF00515 and the Office of Science, Office of

Basic Energy Sciences.
† zhezhang@slac.stanford.edu

applied in online optimization scenario. However, more con-

siderations must be taken in the accelerator control rooms

(ACR), to boost the efficiency of the machine tuning tasks in

daily operations: 1) The tasks are usually repeated hundreds

of thousands of times, so rerunning a task should be as easy

as possible, 2) optimization data for all history runs should

be archived and logged properly, for future references, 3)

optimizations are required to be strictly safe – no violations

on variable hard boundaries would be tolerated, and 4) the

optimization progress must be monitorable and controllable

– the operators should be able to pause/resume/terminate

a task according to the situation. We developed Badger –

an online optimization framework that was designed with

ACR usage in mind – that accounts for all the requirements

above. Badger has been tested and verified to work in ACR

of SLAC, DESY, and BNL.

CONCEPTS

Badger abstracts an optimization run as an optimization

algorithm interacts with an environment, by following some

pre-defined rules. As visualized in Figure 1, within an

optimization routine, the environment is controlled by the

algorithm and tunes/observes the control system/machine

through an interface, while the users control/monitor the

optimization flow through a graphical user interface (GUI)

or a command-line interface (CLI).

Figure 1: The architecture of Badger. The algorithm accepts

an evaluate function provided by Badger as an argument,

while the evaluate function sends trail solutions to be eval-

uated to the environment. Environment talks to the machine

through an optional interface, to get or set the process vari-

able (PV) values. The data flow during the optimization goes

through the Badger core (shape in blue) and the optimization

progress can be monitored/controlled by the Badger GUI or

CLI (not shown in the plot).

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST058

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOST058

999

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Algorithms, environments, and interfaces in Badger are

all managed through a plugin system and could be developed

and maintained separately. The application interfaces (API)

for creating the plugins are very straightforward and simple,

yet abstractive enough to handle various situations.

As mentioned above, there are several terms/concepts

in Badger, and their meanings are a little different from

their general definitions. We will briefly go through the

terms/concepts in Badger in the following subsections.

Routine

An optimization setup in Badger is called a routine. A

routine contains all the information needed to perform the

optimization: 1) The optimization algorithm and its hyper-

parameters, 2) the environment in which the optimization

would be performed, and 3) the configuration of the opti-

mization, such as variables, objectives, and constraints.

To run an optimization in Badger, the users need to define

the routine. Badger provides several ways to easily compose

the routine so that the users are not required to write it by

hand.

Interface

An interface in Badger is a piece of code that talks to the

underlying control system/machine. It communicates to the

control system to 1) set a process variable (PV) to some

specific value, and 2) get the value of a PV. An interface

is also responsible to perform the configuration needed for

communicating with the control system, and the configura-

tion can be customized by passing a params dictionary to

the interface.

The concept of the interface was introduced to Badger

for better code reuse. The users don’t have to copy-n-paste

the same fundamental code again and again when coding

the optimization problems for the same underlying control

system. With this concept, users could simply ask Badger

to use the same interface, and focus more on the higher-

level logic of the optimization problem. One thing worth

mentioning is that interfaces are optional in Badger – an

interface is not needed if the optimization problem is simple

enough (such as an analytical function) that can be directly

shaped into a Badger environment.

Environment

An environment is Badger’s way to (partially) abstract

an optimization problem. A typical optimization problem

usually consists of the variables to tune, and the objectives to

optimize. A Badger environment defines all the interesting

variables and observations of a control system/machine. An

optimization problem can be specified by stating which vari-

ables in the environment are the variables to tune, and which

observations are the objectives to optimize. Furthermore,

one can define the constraints for the optimization by picking

up some observations from the environment and giving it a

threshold.

Note that in Badger, one environment could support multi-

ple relevant optimization problems – just put all the variables

and observations to the environment, and use routine config

to select which variables/observations to use for the opti-

mization.

Routine config

A routine config is the counterpart of optimization prob-

lem abstraction regarding the environment. An optimization

problem can be fully defined by an environment with a rou-

tine config. On top of the variables and observations pro-

vided by the environment, routine config tells Badger which

and how variables/observations are used as the tuning vari-

ables/objectives/constraints. Combining the environment

and routine config, Badger would compose an evaluate

function with the following signature:

Y, I,E,Xo = evaluate(X),

where X denotes the variables, Y the evaluated objectives, I

the inequality constraints, E the equality constraints, and Xo

the readout of the variables. This evaluate function would

be sent to the algorithm once the optimization starts.

The reasons to divide the optimization problem defini-

tion into two parts (environment and routine config) are: 1)

Better code reuse, and 2) operations in ACR usually require

slightly changing a routine frequently, so it’s good to have an

abstraction for the frequently changed configurations (rou-

tine config), to avoid messing with the optimization source

code (the environment class).

FEATURES

Once the users create their custom environments for Bad-

ger, Badger provides 3 modes to investigate, inspect, manage,

compose, and run the optimization routines. Various features

are available for each mode, most of the core functionalities

are shared across the 3 modes, while a few features are exclu-

sive in the particular mode. The following subsections would

introduce the key features of the 3 modes, respectively.

CLI mode

In the command line mode, users could view the Badger

meta information and settings by running:

badger

To list all the available plugins, or inspect a specific plugin,

this command is provided:

badger algo/env/intf [PLUGIN NAME]

To view all the predefined routines, or examine/run one

particular routine:

badger routine [ROUTINE NAME] [-r]

And finally, to create and run a routine:

badger run -a ALGO_NAME [-ap ALGO_PARAMS] \\

-e ENV_NAME [-ep ENV_PARAMS] \\

-c CONFIG_FNAME [-s ROUTINE_NAME]

When the routine is running, the evaluated trail solutions

would be printed as a table in the terminal. The current

optimal ones would be highlighted.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST058

TUPOST058C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1000

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools



GUI mode

In a terminal where Badger is available, execute the fol-

lowing command:

badger -ga

would launch the Badger GUI.

Badger GUI provides a more comprehensive feature set

compared to the other two. As shown in Figure 2, users

could navigate through the history runs, filter out the inter-

esting predefined routines, inspect the details regarding one

routine, run and monitor a new optimization, and control

the optimization progress (pause/resume/terminate/etc).

Figure 2: Badger main GUI. Users could browse/search

through predefined routines, view the routine details, navi-

gate through the history optimization runs, copy the inter-

ested optimization data, etc.

Users can also create a new routine based on a predefined

one or from the ground up, in the Badger routine editor as

shown in Figure 3.

With the Badger GUI, users could easily exploit the bene-

fits that Badger core provides. It’s the recommended mode

to use in general.

API mode

Since Badger is a python package, it can be used the usual

way as any other python package – being imported and used

as a library. Badger provides get_algo(), get_env(),

and get_intf() interfaces to grant the users access to the

available plugins in Badger, so that the users could integrate

Badger into their own workflows.

EXTENSIBILITY

Plugin system

Algorithms, interfaces, and environments are all plugins

in Badger. A plugin in Badger is a set of python scripts,

a YAML config file, and an optional README.md. Plug-

ins can be developed and maintained separately and once

Figure 3: Badger routine editor. With the routine editor,

users could select the optimization algorithm and environ-

ment to use, change the hyper-parameters for the algorithm

and the environment, and configure the variables, objectives,

and constraints (VOCs) of the routine.

released, they could be integrated into Badger by simply

putting the whole plugin folder under a specific directory

managed by Badger.

One interesting property of Badger plugins is that plugins

can be nested – the plugin developer can use any available

plugins inside the newly created ones. Say, one could com-

bine two environments and create a new one effortlessly,

thanks to this nestable nature of Badger plugins. The users

could explore the infinity of possibilities by nesting plugins

together with their imagination.

Extension system

The extension system is another way to extend Badger’s

capabilities, and in a sense, it is more powerful than the plu-

gin system, since it could make a batch of existing algorithms

available in Badger in a few lines of code.

With the extension system, Badger could use any existing

algorithms from another optimization package. Currently,

Badger has an extension for Xopt [8]. More extensions are

planned to be implemented soon (for example, Teeport [10]

extension for remote optimization).

CONCLUSION

We developed a plugin-based optimization platform Bad-

ger, which is designed specifically for online optimization

scenarios in the accelerator control rooms. Badger provides

CLI, GUI, and API modes to satisfy the needs under various

circumstances. New optimization problems can be incorpo-

rated into Badger by creating custom environment plugins.

Badger’s capability could be easily extended through its plu-

gin and extension system. More information can be found

on the Badger homepage https://slac-ml.github.io/Badger.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST058

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOST058

1001

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES

[1] X. Huang, J. Corbett, J. Safranek, and J. Wu, “An algorithm

for online optimization of accelerators,” Nucl. Instrum. Meth-

ods Phys. Res., Sect. A, vol. 726, pp. 77–83, 2013.

[2] X. Pang and L. Rybarcyk, “Multi-objective particle swarm

and genetic algorithm for the optimization of the lansce

linac operation,” Nucl. Instrum. Methods Phys. Res., Sect. A,

vol. 741, pp. 124–129, 2014.

[3] X. Huang et al., “Development and application of online

optimization algorithms,” in Proc. North Amer. Part. Accel.

Conf.(NAPAC), 2016, pp. 1–5.

[4] W. F. Bergan, I. V. Bazarov, C. J. Duncan, D. B. Liarte, D. L.

Rubin, and J. P. Sethna, “Online storage ring optimization

using dimension-reduction and genetic algorithms,” Phys.

Rev. Accel. Beams, vol. 22, no. 5, p. 054 601, 2019.

[5] K. Tian, J. Safranek, and Y. Yan, “Machine based optimiza-

tion using genetic algorithms in a storage ring,” Phys. Rev.

Accel. Beams, vol. 17, no. 2, p. 020 703, 2014.

[6] J. Duris et al., “Bayesian optimization of a free-electron

laser,” Phys. Rev. Lett., vol. 124, no. 12, p. 124 801, 2020.

[7] D. K. Olsson et al., “Online optimisation of the MAX-IV

3 GeV ring dynamic aperture,” Proc. IPAC’18, vol. 2281,

2018.

[8] C. Mayes, Christophermayes/xopt: Flexible high-level op-

timization in python, 2022. https : / / github . com /

ChristopherMayes/Xopt

[9] S. Tomin, “Automated optimization of the european xfel

performance with ocelot,” in ICFA Beam Dynamics Mini-

Workshop: Machine Learning, 2018.

[10] Z. Zhang, X. Huang, and M. Song, “Teeport: Break the wall

between the optimization algorithms and problems,” Fron-

tiers in big Data, vol. 4, 2021.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST058

TUPOST058C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1002

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools


