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Abstract
SLAC MeV-UED, part of the LCLS user facility, is a

powerful “electron camera” for the study of ultrafast molec-
ular structural dynamics and the coupling of electronic and
atomic motions in a variety of material and chemical sys-
tems. The growing demand of scientific applications calls
for rapid switching between different beamline configura-
tions for delivering electron beams meeting specific user run
requirements, necessitating fast online tuning strategies to
reduce set up time. Here, we utilize multi-objective Bayesian
optimization(MOBO) for fast searching the parameter space
efficiently in a serialized manner, and mapping out the Pareto
Front which gives the trade-offs between key beam parame-
ters, i.e., spot size, q-resolution, pulse length, pulse charge,
etc. Algorithm, model deployment and first test results are
presented.

INTRODUCTION
Machine learning(ML) and artificial intelligence(AI) have

revolutionized many computational and real world tasks in
recent years, from autonomous driving, protein folding pre-
diction [1] to fusion reactor control [2]. Speeding up and aid-
ing online optimizations of complex particle accelerators is
one of the key areas where AI/ML can make substantial con-
tributions [4–10]. At MeV-UED [3], the growing demand of
scientific applications calls for highly automated and rapid
switch between different machine configurations for deliver-
ing electron beams meeting specific user run requirements,
necessitating fast online tuning strategies to reduce set up
time. At mean time, rapid R&D activities are undergoing for
enabling future science applications, which pose additional
challenges for beam tuning and optimizations.

We utilize AI/ML based techniques for speeding up on-
line beam tuning at MeV-UED. In particular, the recently
introduced Multi-Objective Bayesian Optimization(MOBO)
scheme [8] was used for searching the parameter space effi-
ciently in a serialized manner, and mapping out the Pareto
Front which gives the trade-offs between key beam parame-
ters, i.e., spot size, q-resolution, pulse length, pulse charge,
etc. This method uses a set of Gaussian Process(GP) surro-
gate models, along with a multi-objective acquisition func-
tion, to reduce the number of observations needed to con-
verge by at least an order of magnitude over current methods,
i. e., Multi-Object Genetic Optimization (MOGA), and is
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thus a critical step toward online multi-objective optimiza-
tion on real accelerator systems.

MULTI-OBJECTIVE BAYESIAN
OPTIMIZATION

The goal of multi-objective optimization is to search the
input parameter space and minimize(for simplicity, here we
discuss the minimization case) the vector objective function
f(x) = { 𝑓1 (x), 𝑓2 (x), ..., 𝑓𝑀 (x)}. Usually, there is no sin-
gle solution x∗ that simultaneously minimizes all objectives.
Instead, objective vectors are compared using Pareto dom-
ination: an objective vector f(x) dominates another vector
f(x′) if 𝑓𝑚 (x) ≤ 𝑓𝑚 (x′) for all 𝑚 = 1, ..., 𝑀 and there exists
at least one 𝑛 such that 𝑓𝑛 (x) < 𝑓𝑛 (x′). The Pareto Front
(PF) P is the set of non-dominated objective vectors which
gives the optimal trade-offs between objectives. Thus the
goal of a Pareto optimization algorithm is to identify the PF
within a pre-specified budget of function evaluations. Hyper-
volume(HV) is an often used metric to evaluate the quality
of a PF, the HV quantifies the hypervolume(area in the 2 ob-
jective case) of the set of points dominated by P intersected
with a region of interest in objective space bounded below
by a reference point r (see Figure 1). MOBO attempt to
maximize HV during the optimization process. Given a set
of 𝑁 observations:𝐷𝑁 = {(x1, y1), (x2, y2), ..., (x𝑁 , y𝑁 )},
each objective is modeled as an independent GP surrogate
model:

Figure 1: Multi-objective optimization, Pareto Front is
formed by non-dominated vectors in the objective space,
the optimizer attempts to maximize Hypervolume(HV) dur-
ing the optimization process.
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Figure 2: UED beamline layout and MOBO work flow.

𝑓𝑚 (x) ∼ GP𝑚 [𝜇𝑚 (x), 𝑘𝑚 (x, x′)] (1)

Where 𝜇𝑚 (x) is the predicted mean of objective function
𝑓𝑚 (x) and 𝑘𝑚 (x, x′) is the covariance function(kernel) based
on the objective function behavior(A common kernel is the
radial-basis function(RBF) [11]). To proceed with optimiza-
tion, a scalar acquisition function need to be constructed
to find points which are likely to maximally increase the
Pareto Frontier HV. Different acquisition functions such as
Expected Hypervolume Improvement(EHVI) [12], Parallel
Expceted Hypervolume Improvement(qEHVI) [13] and Up-
per Confidence Boundary Hypervolume Improvement(UCB-
HVI) [12] were proposed for application under different
conditions. For the application of online optimization at
MeV-UED, we choose UCB-HVI for it’s simplicity and low
computation cost, especially in high-dimensional objective
spaces. The UCB-HVI acquisition function describes an
optimistic view of the HV improvement:

𝛼𝑈𝐶𝐵−𝐻𝑉𝐼 (𝜇, 𝜎,P, r, 𝛽) B 𝐻𝐼 (P, 𝜇 −
√︁
𝛽𝜎, r) (2)

Where the predicted mean 𝜇 and uncertainty 𝜎 in objec-
tive space is weighted by a hyperparameter 𝛽. When 𝛽 ≪ 1
the acquisition function prioritizes exploitation and when
𝛽 ≫ 1 it prioritizes exploration. Combining the GP surro-
gate model and acquisition function, MOBO optimization
can be performed. For each optimization step, the algorithm
updates the GP surrogate model and decide which point to
measure next based on output of the acquisition function, by
this way the PF can be mapped out in a serialized manner.

IMPLEMENTATION AT SLAC MEV-UED
The MOBO optimizer was deployed on SLAC PCDS

server(Figure 2) capable of interfacing UED EPICs system

for beamline control, fast data acquisition, as well as perform-
ing online data processing/surrogate modeling and archiving
data on the LCLS data system(psana). Beam spot size at
sample plane was measured using a YAG screen coupled to
a Questar Microscope with spatial resolution better than 10
𝜇𝑚, q-resolution(equivalent to beam spot size at diffraction
detector) was measured using a P43 phosphor screen cou-
pled to Andor EMCCD. Pulse charge was obtained using
integrated beam intensity with calibration based on Faraday
cup measurement. Electron pulse length was measured using
a high field enhancement THz streaking structure [14, 15]
developed at SLAC.

So far, most studies on AI/ML for accelerators have fo-
cused on proof-of-principle tests of methods under narrow
operating conditions, i. e., sampling in small range, low
dimensional parameter space or optimizing a single ob-
ject [7, 10]. This is mainly due to the difficultness of tak-
ing sufficient amount of data in multi-dimensional parame-
ter/objective space(usually 102 – 103 data points needed and
for each data point, multiple beam property measurements,

Table 1: Beamline Parameters Varied During MOBO Opti-
mization

Parameter Range Unit
Initial pulse charge 10 - 100 fC
Gun amplitude 70 - 90 MV/m
Gun phase 40 - 60 degree
1𝑠𝑡 collimator diameter 100 or 200 𝜇𝑚

Gun solenoid strength 0.1 - 0.25 T
2𝑛𝑑 solenoid strength 0.1 - 0.3 T

Steering magnets varies with 𝐸𝑘

and Sol settings -
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Figure 3: Serialized beam property measurements. (a) beam
profile at sample plane (b) virtual cathode (VCC) image (c)
beam profile on diffraction detector (d) beam streaked in
horizontal using a high field enhancement THz structure,
horizontal width corresponds to pulse length.

such as pulse length, spot size, emittance measurements need
to be performed). Other practical challenges further compli-
cate the process, for example, beam steering always need to
be re-optimized when changing RF cavity amplitudes/phase
or tuning focusing elements, also it is often time consuming
to change certain variables such as gun amplitude(must do
it adaptively to follow cavity temperature change), UV spot
size/ pulse length, etc.

To resolve the above issues, a specific data acquisi-
tion(DAQ) program was designed and integrated with
MOBO. The DAQ automatically switches between differ-
ent beam detectors and the THz timing structure so that
measurements of spot sizes and pulse length at different
beamline locations can be quickly performed in a serialized
manner(Fig. 3). System parameters were archived simulta-
neously for surrogate modeling. In addition, manual aid to
steering/timing was included. When it needed, the operator
can manually tune the steering coils to kick the beam through
the collimator and THz structure, as well as tune the THz
delay stage to match time of arrival of e-beam and Thz pulse
and place the beam at zero-crossing to perform temporal
measurements. At mean time, the recorded steering coil and
delay stage settings were used to train the surrogate model
for predicting correct settings in the following measurements.
By using these methods, 102 – 103 high quality data points
can be obtained during a several hours run.

RESULTS
MOBO optimization was performed at SLAC MeV-

UED beamline. Beamline parameters including gun am-
plitude/phase, solenoid strengths, initial pulse charge, col-
limator diameter and steering magnets, etc., were varied
to produce electron beam with various pulse length, spot
size, q-resolution and pulse charges for the use in different
ultrafast electron diffraction experiments. Table 1 illustrates
the beamline parameters varied during MOBO optimiza-
tions. For each run, at least 2 objectives, e. g., spot size vs
q-resolution, or pulse length vs q-resolution were assigned,
the optimizer first acquire 10 randomly sampled points in the
parameter space and built the GP surrogate model, then run

Figure 4: q-resolution vs spot size optimizations, Pareto
Front highlighted.

Figure 5: Pulse length vs q-resolution optimizations, Pareto
Front highlighted.

MOBO to explore the parameter space and obtain the hyper-
volume and Pareto Front in objective space. For spot size vs
q-resolution optimizations, in total > 2100 data points were
taken with various initial pulse charge, beam energy and
collimator settings. For pulse length vs q-resolution/spot
size optimizations, > 160 data points in total were taken.

Figure 4 illustrates the spot size vs q-resolution optimiza-
tion result with initial pulse charge 10 fC and 200 𝜇𝑚 col-
limator inserted, complete hypervolume(red) and Pareto
Front(blue) was obtained within 140 measurements. Pareto
Front shows clear trade-off between spot size at sample plane
and rms q-resolution on the diffraction detector, the smallest
spot size was down to 23 𝜇𝑚 rms with rms q-resolution
up to 0.275 Å−1 (left most data point on the Pareto Front).
q-resolution gets better with larger spot size and levels off
while spot size > 45 𝜇𝑚 rms, the corresponding smallest
rms q-resolution was 0.165 Å−1.

Figure 5 illustrates the rms pulse length vs q-resolution op-
timization result with initial pulse charge 10 fC and 200 𝜇𝑚

collimator inserted, complete hypervolume(red) and Pareto
Front(blue) was obtained within 120 measurements. Simi-
larly, Pareto Front shows clear trade-off between temporal
and q-resolution, in the case of best q-resolution (0.165 Å−1),
rms pulse length was up to 109 fs. Pulse length gets smaller
with larger q-resolution, and was found to be down to 66 fs
rms with q-resolution = 0.22 Å−1.
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CONCLUSION
AI/ML based beam optimization was implemented at

SLAC MeV-UED. Particularly, a MOBO optimizer was de-
ployed on SLAC PCDS server, in combination with a specif-
ically designed DAQ, the optimizer was capable of perform-
ing serialized beam property measurements and obtain the
Pareto Front which gives trade-offs between key beam pa-
rameters, i. e., rms pulse length vs q-resolution, q-resolution
vs spot size, etc. Further developments include adding beam
parameter constraints [8] using Xopt [16], physics informed
optimizations [9], as well as adding emittance vs pulse length
optimizations which will be particularly beneficial for im-
proving the UED machine performance.
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